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Abstract

Purpose: Frequency selectivity is a fundamental property of the periph-
eral auditory system; however, the invasiveness of auditory nerve (AN)
experiments limits its study in the human ear. Compound action
potentials (CAPs) associated with forward-masking have been sug-
gested as an alternative to assess cochlear frequency selectivity. Pre-
vious methods relied on an empirical comparison of AN and CAP
tuning curves in animal models, arguably not taking full advan-
tage of the information contained in forward-masked CAP waveforms.
Methods: To improve the estimation of cochlear frequency selec-
tivity based on the CAP, we introduce a convolution model to
fit forward-masked CAP waveforms. The model generates mask-
ing patterns that, when convolved with a unitary response, can
predict the masking of the CAP waveform induced by Gaussian
noise maskers. Model parameters, including those characterizing fre-
quency selectivity, are fine-tuned by minimizing waveform prediction
errors across numerous masking conditions, yielding robust estimates.
Results: The method was applied to click-evoked CAPs at the
round window of anesthetized chinchillas using notched-noise maskers
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with various notch widths and attenuations. The estimated qual-
ity factor Q10 as a function of center frequency is shown to
closely match the average quality factor obtained from AN fiber
tuning curves, without the need for an empirical correction factor.
Conclusion: This study establishes a moderately invasive
method for estimating cochlear frequency selectivity with poten-
tial applicability to other animal species or humans. Beyond
the estimation of frequency selectivity, the proposed model
proved to be remarkably accurate in fitting forward-masked CAP
responses, and could be extended to study more complex aspects
of cochlear signal processing (e.g., compressive nonlinearities).

Keywords: compound action potential, auditory nerve, frequency selectivity,
cochlear tuning, forward masking

1 Introduction

Much of our knowledge about the mammalian peripheral auditory system
has been gained from single-fiber recordings of the auditory nerve in ani-
mals commonly used in laboratory studies. However, the invasiveness of these
experiments prevents their use in humans, hindering the search of potential
specificities of the human auditory system. Other means have been employed
to infer the properties of the human inner ear, either through psychophysical
experiments, or through less invasive physiological methods. In particular, a
combination of these solutions – including psychophysical experiments based
on masking [1, 2], otoacoustic emissions (OAEs) [1, 3] and compound action
potentials (CAPs) [4] – has led to a growing body of evidence that cochlear
frequency selectivity is sharper in humans than small mammals. Frequency
selectivity is a fundamental property of the peripheral auditory system, but
its study is not straightforward, a reason being that it is affected by cochlear
compressive nonlinearities [2, 5, 6]. As a result, although data on cochlear fre-
quency tuning in humans have been obtained by various means, the picture is
not as detailed as for other mammals, and some methods of assessing cochlear
frequency selectivity do not show any significant difference with small mam-
mals [7]. To advance our knowledge in this area, it is necessary to refine the
available tools and to better understand how they relate to auditory physiol-
ogy. For example, OAE-based estimates of frequency selectivity would benefit
from a better understanding of how OAE delays [8] or distortion-product level
functions [9] relate to cochlear tuning. The focus of this paper is the CAP, an
auditory evoked potential that reflects the summed activity of auditory nerve
fibers (ANFs). CAP data can be obtained with a satisfactory signal-to-noise
ratio (SNR) at the cost of moderate invasiveness [10, 11], and, if analyzed with
an appropriate model, could provide significant information on the compound
response of ANFs, including AN frequency tuning.
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Estimation methods of cochlear frequency selectivity based on the CAP rely
on the masking paradigm, similar to psychophysical experiments historically
associated with the measurement of critical bands in humans [12, 13]. While
simultaneous masking reflects both excitatory and suppressive masking [14–
16], estimates based on forward masking reflect only excitatory masking and
have good agreement with ANF tuning curves [15, 17, 18]. In the last decade,
Verschooten et al. refined a previous estimation procedure based on forward-
masked CAPs [15, 17] using notched-noise maskers. The procedure was first
validated in animal models [18] and later applied to human subjects [4]. Their
estimation method was based on establishing iso-response curves for masker
level versus masker notch width. However, the method required an empirical
correction to match the quality factor Q10 of ANF tuning curves with the
correction factor varying across species. In particular, the estimate of Q10 for
humans was higher if the correction factor found for macaques was applied
instead of the factor found for smaller mammals, leaving the exact range for
Q10 uncertain.

In this work, we attempt to reduce the dependence of the estimation of
frequency selectivity on an empirical correction factor by relating forward-
masked CAP responses to a computational model of ANF activity. To this
end, we assume that the masked part of forward-masked CAP responses can
be approximated by a ‘masking pattern’ defined in the time domain convolved
with a unitary response. Convolution models have been used for decades to
describe the CAP [19], but applications of these models have been limited since
they require many assumptions about the factors affecting the CAP waveform.
These factors include the (level-dependent) relationship between cochlear place
and AN spike latencies, the spread of excitation along the cochlear partition,
the spike unit response, and the distribution of thresholds and rate functions
[20]. However, considering forward-masked CAPs with multiple masking stim-
uli, but with a fixed probe, simplifies the modeling approach because several
factors remain constant as a consequence of using a unique and fixed probe. In
addition, forward-masked CAPs provide information about some of the factors
mentioned above, such as the place-latency relationship using high-pass noise
maskers with different cut-off frequencies [10, 21]. In this paper, we introduce a
model for predicting click-evoked CAP waveforms in the presence of notched-
noise forward-maskers with different spectral properties. The estimation of the
model parameters, including cochlear frequency selectivity, is done through
the minimization of the waveform prediction errors. To assess our method,
we recorded forward-masked CAPs at the round window of anesthetized chin-
chillas and tuned the model to fit the masked CAP waveforms. We found that
the estimates of the quality factor averaged over experiments closely matched
Q10 values from published ANF single-fiber data. Beyond the estimation of
frequency selectivity, the results show that the model was remarkably accu-
rate in fitting the forward-masked CAP responses, highlighting the potential
of the proposed paradigm to study other properties of the peripheral auditory
system (e.g., compressive nonlinearities).
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2 Methods

2.1 Methods overview

Approach. The methods introduced in this paper build upon the convolution
model that has been widely adopted since early work on the CAP [19, 20]. In
this framework, in its most basic representation, a CAP waveform is written as
a convolution between two components, a cochlear excitation pattern E and
a unitary response u0 that shares the biphasic shape of the CAP:

CAP (t) = E ∗ u0 (t) =

∫
τ

E(τ)u0(t− τ) dτ . (1)

The cochlear excitation pattern represents the distribution of excitation
levels across different latencies. For consistency, we use the term “latency
domain” throughout the paper to refer to the context before the convolu-
tion is applied, corresponding to the dummy variable τ in the above integral.
Conversely, we use the term “time domain” to refer to the context after the
convolution has been performed, when the excitation patterns and unitary
response are combined to generate the CAP waveforms.

However, our focus in this work is on the part of the CAP that is affected
by forward masking. In particular, we are interested in the differences of a
click-evoked CAP waveform induced by spectral manipulations on a notched-
noise masker (e.g., increasing the masker notch width). Rather than examining
the raw CAP waveform, we consider ∆CAP (t), the release of masking of the
CAP, defined by the difference in the CAP amplitude between two masking
conditions:

∆CAP (t) = CAPmasked(t)− CAPmasked,b(t) ,
where CAPmasked(t) is the CAP response associated with a notched-noise

masker and CAPmasked, b(t) is the response associated with a reference mask-
ing condition, chosen as the no-notch masker (’b’ stands both for baseline or
broadband noise).
We can write a similar equation to Eq 1 for ∆CAP , which will play a key role
in the rest of the paper:

∆CAP (t) = R ∗ u(t) (2)

where we call R(τ) the masking-release pattern and u the unitary response.
The approach of this paper is to introduce a model that generates esti-

mates for the masking-release pattern R(τ) associated with each presented
forward-masking condition. The generation of these patterns depend on several
parameters, including the quality factor Q10 characterizing cochlear frequency
tuning. The model is fitted to experimental data by minimizing the mean
squared error between the generated waveforms and the actual masking-release
waveforms, resulting in estimates of the model parameters.

The structure of the Methods section is as follows. We start by introducing
the concept of masking input-output curves, on which our model is based. The
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model architecture is described next. The remaining subsections are dedicated
to the application of the introduced methods to experimental data collected
in anesthetized chinchillas. First, we describe the data collection procedure
and provide more details on the masking conditions used. We then detail how
we adjusted the model to the experimental data. In addition, Appendix A
provides more context to the convolution model (Equations 1 and 2) with a
closer examination of the underlying assumptions.

Stimulus paradigm As we proceed into the Methods section, this para-
graph briefly describes the relevant experimental paradigm. We consider CAP
waveforms evoked by a fixed probe (alternating-polarity click) in the pres-
ence of Gaussian noise maskers in a forward-masking setting. The level of the
click probe is 80 dB peak-equivalent sound pressure level (peSPL). The CAP
waveforms are obtained by averaging the responses (over the two polarities)
associated with the same masker. Figure 1a shows the time representation of
a stimulus cycle. The panel b of the same figure shows the spectral profile
of the three types of maskers that were used in this study: high-pass noise
maskers, notched-noise maskers with a varying notch amplitude, and notched-
noise maskers with a varying notch width. The three types of maskers were
designed to probe different aspects of the CAP, as further explained in the
Methods section; all three types were needed to optimize the convolution model
introduced next and to estimate the parameters of interest (in particular: the
place-latency relationship, the growth of masking, and the cochlear frequency
selectivity). The set of maskers also includes the reference condition, i.e., a
broadband-noise masker without a spectral notch.

2.2 Model

This subsection describes the architecture of the model used to generate the
estimates of the masking-release CAP waveforms. Its purpose is not to provide
exhaustive information on how the model parameters were estimated, which
is done at the end of the Methods section.

Masking input-output functions. To build our model, we make the assump-
tion that the amount of masking of the CAP can be quantified using the
outputs of a cochlear filter bank and masking input/output (I/O) curves deter-
mining the growth-of-masking for each output channel (Fig 2, steps B and
C). More explicitly, if I is the average intensity in response to a masker at
the output of a single cochlear filter, we assume that the amount of masking
M for the compound response of the associated ANFs can be characterized
by a function of I (masking I/O function). We used the Weibull cumulative
distribution function (CDF), as in Verschooten et al. [18]:

M(I) = C

[
1− e−

(
(I−I0)+

λ

)s]
, (3)
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Fig. 1 Time representation of one stimulus cycle (a.) and spectral representation of
the three types of maskers (b.). a. The stimuli consist of the repetition of a masker and
probe. The masker is generated from Gaussian noise, following one of the frequency pat-
terns represented in panel b. The probe is a 80-dB peSPL click of alternating polarity. The
forward-masked CAPs are obtained by averaging the responses evoked by the probe pre-
sented under the same masking condition. The durations illustrated are from left to right:
gating time (cosine ramp), masker-probe interval, probe-masker interval and masker dura-
tion. b. Schematic representation of the spectra of the three different types of maskers. Each
type of masker was designed for a different purpose: high-pass noise maskers for the estima-
tion of the place-latency relationship (‘narrow-band analysis’ method [21]), notched noise
maskers for the estimation of masking input-output functions (maskers with varying notch
attenuation) or frequency selectivity (varying notch widths).

where (I − I0)+ = I − I0 if I ≥ I0, 0 elsewhere. Its parameters are I0, λ (scale
parameter), and s (shape parameter). The Weibull CDF is similar to a sig-
moid, but does not impose symmetry around its half-maximum value point.
By convention, we set the constant C so that the masking I/O functions are
constrained to 100% masking for the response level.
Note that the above assumption is not the only basis of our model. In par-
ticular, other assumptions underlie the convolution model (Eq 2). To avoid
overloading the Methods section, we leave the discussion of these additional
assumptions in Appendix A.

Place-latency relationship. For our model to simulate forward-masked CAP
waveforms, we need to have estimates of the relevant quantities (e.g., the
amount of maskingM or the masking-release pattern R) in the latency domain.
However, it is generally easier to consider these values in the place (or center
frequency, CF) domain. Whenever it is useful, we will convert dependencies
on latencies into a dependency on CF (or vice versa) by assuming that CFs
and latencies are related by a power-law: CF (τ) = B(τ − t0)α for τ > t0. In
this equation, B, t0 and α can be estimated using the high-pass noise maskers,
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Fig. 2 Flow diagram of the generation of the masking-release estimates ∆̂CAP (t). The
masker spectrum (A) is decomposed by a bank of gammatone filters. As the masker spectra
are of simple form, i.e., composed of rectangular bands, the average response (B) at the
output of the filter bank was computed using an analytical formula (see text). The masking
input-output function applied to the average response provides the amount of masking M(f)
(C) or, equivalently, the amount of masking release 1 −M(f) (D). Frequency weights R0(f)
are included to account for the non-homogeneous contributions of different CFs to ∆CAP .
This yields the final estimate of the amount of masking release defined in the frequency
domain (E). With a change of variable substituting CFs with latencies (using a power-law),
the masking release is converted to the latency domain, giving the masking-release pattern
R(τ) (F) . Once convolved with the unitary response u, we finally obtain the estimate of the

release waveform ∆̂CAP (t) (G). The parameters that are fine-tuned during the optimization
process (gradient descent) are highlighted in red: they are Q10, the masking I/O function
(Weibull CDF) variables, and the frequency weights. The unitary response u and the power-
law parameters relating CFs and latencies are also parameters of the model, but are adjusted
independently by a specific procedure (see text).

similar to the narrow-band analysis of the CAP already described in other
studies [21, 22]. This method assumes that the high-pass noise stimuli mask
the contributions of ANFs with CFs above the cut-off frequency. By decreasing
the cut-off frequency and masking more basal ANFs, the peak latency of the
CAP response (N1) is delayed in a similar fashion to the cochlear traveling
wave.

Generation of the ∆CAP (t) estimates. We recall the main equation (Eq 2):
∆CAP (t) = R ∗ u(t), where ∆CAP (t) is a masking-release CAP waveform
obtained by subtracting the response obtained under a given masking condition
with the one obtained in the reference condition (no-notch). The right side of
the equation is a convolution between a masking-release pattern R(τ) and a
unitary response u.

Figure 2 describes the steps leading to the generation of the estimates

∆̂CAP (t). In the following, we justify these steps going backward from

∆̂CAP (t). ∆̂CAP (t) is obtained by convolution of a masking-release pattern
R(τ) and the unitary response u. We assume that the masking-release pattern
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R is related to the amount of masking M by

R = R0(1−M), (4)

where R0 is the difference in the excitation pattern between the full-notch
condition (M=0; no forward-masker) relative to the no-notch condition (M=1;
broadband noise). Here, we used the convention than M = 1 for the no-notch
condition. As such, R0 represents the maximum or fully unmasked masking
release; its significance and how it is estimated is expressed later in the text.
To generate the masking-release patterns, R0 and M were first estimated in
the CF domain by discretizing the linear frequency range [600 Hz, 12 kHz] into
uniform intervals. This allowed us to define the masking-release pattern over
CF, which was then converted into the latency domain by mapping latency
and frequency bins using the power-law relationship mentioned in the previous
paragraph. Finally, to compute the amount of masking M as a function of
frequency, we relied on a simplified model of cochlear filtering using a linear
filter bank. Given the average power spectral density of the masker S(f), the
average response intensity I at the output of a cochlear filter was computed
using:

< A2 >=

∫
|w(f − CF )|2 S(f) df ,

I = 10 log10(< A2 >).

In the above equations, < A2 > is the intensity in linear units while I is
in dB, and w is the cochlear filter defined in the frequency domain, centered
around 0 and normalized such as its root mean square (RMS) value is 1. We
considered that w was a 4th-order gammatone filter. The shape of w then
depends only on the tuning of the cochlear filter at CF, characterized by the
quality factor Q10 (related to the 10 dB-bandwidth by: Q10 = CF/BW10). As
the masker spectra are simple and defined by rectangular bands, analytical for-
mulas for I as a function of CF were employed instead of integral expressions.
These formulas are written in Appendix B.

After the computation of the response average intensities was done, the
amount of masking M was finally obtained by applying the masking I/O
function (Eq 3) to I.

2.3 Experimental Protocol

Preparation and anesthesia. To assess our method, we collected forward-
masked CAP responses in 5 adult male chinchillas (Chinchilla lanigera) using
surgical procedures pre-approved by the Purdue Animal Care and Use Com-
mittee. Anesthesia was induced using subcutaneous injections of xylazine
(2-3 mg/kg) and ketamine (30-40 mg/kg). Anesthesia was maintained using
intraperitoneal boluses of sodium pentobarbital (15 mg/kg/2h), and fluids
(Lactated Ringer’s) were administered subcutaneously throughout the experi-
ment (∼1cc/hr). The animals’ vital signs were monitored using pulse oximetry



Estimation of freq. selectivity using forward-masked CAPs 9

(Nonin 8600V, Plymouth, MN) while oxygen was continuously delivered to
the animal’s nose area. Body temperature was maintained at 37°C using
a homeothermic monitoring system with rectal probe (50-7220F, Harvard
Apparatus).

Surgical procedure. Following anesthetic induction, a tracheotomy was per-
formed to provide a low-resistance airway, reducing respiratory artifacts. Skin
and muscles were transected following a dorsal-midline incision, and the exter-
nal ear canals and bullae were subsequently exposed. Hollow ear bars were
bilaterally placed in the ear canals and secured to a stereotaxic frame (David
Kopf Instruments, Tujunga, CA). Sound was delivered monaurally through
the ear bars using a dynamic loudspeaker (DT48, Beyerdynamic) at a sam-
pling frequency of 48 kHz. To prevent a progressive negative pressure buildup
in the bulla, a polyethylene tube (PE-90) was placed through an incision in
the anterior bulla [23]. A second incision was made in the posterior base of
the ipsilateral bulla to expose the middle ear. A silver wire electrode was
placed near the round window to record CAPs and sealed in place within
bulla opening using light-cured dental cement (Prime-Dent, USA). A pocket
in the nape of the neck was made for a silver coiled wire reference electrode
soaked in isotonic saline and connected to ground. All procedures were carried
out in a double-walled, electrically shielded, sound-attenuating booth (Acous-
tic Systems, Austin, TX, USA). At the end of the experiments, animals were
euthanized by barbiturate overdose.

Signal acquisition and pre-processing. We calibrated sound input using
a probe microphone (Etymotic ER-7C) placed near the eardrum. A flat
frequency response (within ± 2 dB until 10kHz) was achieved using a real-
time 256-tap digital finite impulse response filter for the forward-maskers
implemented using Tucker-Davis Technologies (TDT, Alachua, FL) hardware
(RP2.1). For the click probe, we adopted a different equalization strategy by
using the inverse of a 128th-order all-pole filter computed using linear pre-
dictive coding (LPC) to also correct for the phase differences induced by the
acoustic system. CAP responses from the round window were amplified and
band-passed using an ISO-80 Bio-Amplifier (103 gain, bandpass filtered from
102 to 104 Hz, World Precision Instruments) before being recorded by hard-
ware modules (TDT RP2.1). Signal acquisition was controlled by a custom
MATLAB-based (MathWorks, Natick, MA) interface. We used 5 chinchillas for
this study, 4 of which had exploitable data at all center frequencies (CFs) tested
(except at CF=8 kHz for chinchilla Q333). The last animal had exploitable
data only within a limited frequency range (3–5 kHz), and is not included in
the Results section, although the analysis we conducted on the partial data did
not contradict the conclusions presented in the paper. Prior to analysis, the
CAP responses were pre-processed by applying a Tukey window to isolate the
time window where masking had a visible effect on the CAP (e.g., for chinchilla
Q395: window defined on the interval [0.7, 5] ms, proportion of interval covered
by the tapered cosine region: 0.4). The signals were smoothed by a Gaussian
filter of standard deviation 0.03 ms (or, in frequency: 5.3 kHz). Additional
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pre-processing was required in two animals to address specific experimental
artifacts: for chinchilla Q395, a band-rejection filter was applied to remove a
1.5-kHz periodic electronic noise ; for chinchilla Q393, the DC components of
the CAP responses were corrected to compensate for a slow DC drift.

Presentation of masker and probe. The relevant durations within one stim-
ulus cycle are given in Figure 1a showing the time representation of the masker
and probe. A cycle has a total duration of 160 ms. The durations were set
according to existing data in the literature [24] as well as data collected during
pilot experiments. We used in total 155 masking conditions, each associated
with a one of the three power spectral profile shown in Fig 1b. Each stimulus
cycle was repeated 120 times (12 blocksÖ10 repetitions). Within each block,
the conditions were presented in a random order, ensuring some degree of
interleaving to mitigate potential adverse effects due to long-term adaptation.

2.4 Masker design

A total of 155 masking conditions were presented during each experiment.
Apart from the reference condition (broadband noise), the remaining 154 con-
ditions were divided as follows: (a) high-pass noise maskers: n=12; (b) notched-
noise maskers with a varying notch amplitude: n=77; (c) notched-noise maskers
with a varying notch width, n=65.

The high-pass noise maskers (n=12) were each associated with a cut-off
frequency ranging from from 1.2 kHz to 10 kHz. As mentioned before, these
maskers were used to estimate the relationship between latencies and CFs.

The notched-noise maskers with a varying notch amplitude (n=77) were
grouped according to the CF of the notch around 7 reference frequencies: 1.5,
2.2, 3, 4, 5, 6, and 8 kHz. For each CF, 10 maskers of this type were associated
with a notch attenuation ranging from 35 dB to 0 dB, thus gradually merging
into the no-notch condition (0-dB attenuation, reference condition). Except
for the first experiment that was conducted (chinchilla Q395, corresponding
to the data presented in the Results section), an additional condition was
included with a notch of -3 dB attenuation (i.e., the power spectrum in the
region of the notch was above the broadband-noise spectrum density); the
introduction of this extra masker helped to determine the slope of the input-
output masking curve at the reference power-spectrum level. The notched-noise
maskers described in this paragraph typically had a large notch width (e.g.,
2-kHz width at CF=5 kHz, 1-kHz width at CF=1.5 kHz). They were designed
to estimate the amount of masking as a function of place-specific response
intensity (masking I/O curves).

The remaining of the maskers were related to the third and last type:
notched-noise maskers with a varying notch width (n=65). As for the previous
type, these maskers were grouped according to the 7 reference frequencies. As
an example, 10 maskers were associated to CF=5 kHz, with the notch width
ranging from 900 Hz to 1.4 kHz, which is of the order of the expected value
of the 10-dB bandwidth of cochlear filters at this CF [25]. To probe different
groups of ANFs, the center frequency of the notch was intentionally put at
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slightly different values between each masker; e.g., 4,800 Hz for one masker
and 5,200 Hz for another. The notch amplitude for this type of masker was
in most cases zero (infinite attenuation in dB). These maskers were designed
to estimate the frequency selectivity of the cochlear filters. The approach is
analogous to the measurement of critical bands in psychological studies, which
also employ notched noise stimuli [2, 12, 13]. The underlying principle is based
on the observation that, if the cochlear filters are sharply tuned, there is a
rapid reduction in masking when the notch width is increased starting from
the no-notch condition.

The frequency spectra of all the maskers were restricted to the range
between 200 Hz and 12 kHz. The maximum power spectral density (PSD),
corresponding to the sidebands of the maskers, was constant within each exper-
imental session but varied across animals, ranging from 4 to 14 dB SPL. This
range of maximum PSD corresponds to a sound level of 45 to 55 dB SPL for
the no-notch (broadband noise) condition.

2.5 Estimation of model parameters

Model unknowns. The model introduced in the beginning of the Methods
section and outlined in Fig 2 has multiple unknowns which are reviewed here:

1. The relationship between latencies and CFs. It is assumed to follow a power-
law:

CF (τ) = B(τ − t0)α for τ ≥ t0 . (5)

2. The unitary response u.
3. The amount of masking as a function of place-specific intensity response (

masking I/O curves). In the case of the Weibull CDF (Eq 3), as adopted in
the rest of the paper, this curve is parametrically defined by three variables
(λ, I0, s).

4. The tuning of the auditory filters, characterized by Q10.
5. The distribution R0(f), which was introduced in Equation 4 as the fully

unmasked masking release. As we move to more practical considerations, it
is convenient to think of R0(f) as frequency weights that had to be included
to account for the non-homogeneous contributions of different CFs to the
masking release of the CAP.

Parameter estimation. This section presents the outline of the estimation
of the parameters listed above. Technical details on the step-by-step procedure
can be found in the code released for this project (jupyter notebook) [33]. To
describe how the model was adjusted to the data, the model parameters can
be separated into two groups. The first group of parameters are those that
required a specific estimation procedure (described in the following paragraph):
these are the parameters defining the place-latency relationship and the uni-
tary response. The other parameters constituting the second group (masking
I/O function, quality factor Q10, and frequency weights) were estimated by
minimizing the reconstruction error of the masking-release waveforms using a
gradient descent algorithm.
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The relationship between latencies and CFs was determined using the
high-pass noise maskers; when presented in the order of decreasing cut-off fre-
quencies, these maskers progressively mask the CAP from basal to more apical
AN contributions. We considered that the ∆CAP peak delay (N1) was the
latency associated with the cut-off frequency. The latencies were fit by a power-
law estimated from the peak delays by least-squares fitting (Powell’s dog leg
method).
The unitary response u was estimated by deconvolution of the masking-release
responses [∆CAP (t)] with a first estimation of the masking-release patterns
for the notched-noise maskers. For this step, the CAP responses were smoothed
by a Gaussian filter of deviation 0.06 ms (or, in frequency: 2.6 kHz) instead of
0.03 ms elsewhere. Once the unitary responses and latencies were determined,
they were considered fixed. However, after the estimation of all the parame-
ters was done according to the procedures described in this sub-section, the
unitary response was re-estimated with the updated masking-release patterns,
and the estimation of the other parameters was performed a second time with
the new unitary response.
Apart from the unitary response and the place-latency relationship, all the
model parameters (highlighted in red in Fig 2) were fitted simultaneously

by minimizing the mean squared error (MSE) between the signals ∆̂CAP (t)
generated by the model, and the true signals ∆CAP (t). The implementation
of the corresponding optimization algorithm is described in the paragraph
Optimization procedure below.

One challenge of the method is that most of the model parameters poten-
tially depend on CF. This is the case for the unitary response (depending on
the normalized PSTH as defined in the model), the parameters controlling the
masking I/O curve, the quality factor Q10, and the frequency weights R0(f).
This issue is mostly resolved by adjusting different versions of the model to
each CF probed instead of having a single model fitted on all the data. For
this purpose, the notched-noise maskers were grouped into 7 different center
frequencies according to the frequency region of the notch (CF = 1.5, 2.2, 3,
4, 5, 6 or 8 kHz) and the associated forward-masked responses were fitted sep-
arately. However, the parameters defining the frequency weights R0(f) were
shared across the different optimization processes. The estimation of R0(f) at
every frequency was made possible at the cost of a regularity assumption con-
sidering that R0 is a smooth function of f . We assumed that R0 belongs to a
low-dimensional manifold, explicitly that R0(f) in the range [200 Hz, 12 kHz]
is only defined by its m = 10 first Fourier coefficients. For the estimation of
Q10, we assumed that the 10-dB bandwidth was constant in the interval of
frequencies around CF and searched its optimal value using gradient descent.
As an alternative, we also used a regression method assuming that Q10 could
be approximated by a radial basis function (RBF) neural network. The input
of the neural network was normalized frequency (x = f/15000) and its target
was logQ10. The activations for the first layer were Gaussian functions with
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standard deviation σ = 0.5). The first layer had 6 hidden neurons and the sec-
ond layer (output) was a linear combination of the hidden neuron activations.
If enabled, the RBF network was trained the same way as the other modules
of the model, using gradient descent to minimize the reconstruction error of
the masking-release waveforms.

Optimization procedure. The goal of the optimization procedure is to adjust
the model parameters highlighted in red in Fig 2, including Q10 characterizing
frequency selectivity, to obtain the best fit between the signals generated by
the model and the true responses. While fitting all these parameters at once
could seem intractable in a traditional setting, this approach is made possible
by the fact that responses to many masking conditions are acquired during
an experiment. We denote [∆CAP (t)]i the masking-release waveforms of the
CAP, where i is an index for the masking condition (i = 1 · · ·Ncond, with Ncond

being the total number of masking conditions). The model yields estimates

[∆̂CAP (t)]i for each masking condition, and we define the cost function as the
total mean square error:

MSE = ‖∆̂CAP −∆CAP‖22 =

Ncond∑
i=1

∑
t

(
[∆̂CAP (t)]i − [∆CAP (t)]i

)2

MSE was minimized by gradient descent. The gradients with respect to the
model parameters were computed with PyTorch, an automatic differentiation
library originally designed for the optimization of artificial neural networks
[34]. A schematic for the graph of computations is provided in supplemen-
tary materials (Online Resource 2), that also synthesizes the operations that

lead to the generation of ̂∆CAP (t). The key point is that, although the entire
model is complex, each step of computation is a simple differentiable operation,
and the gradients can be computed by applying the chain rule. An alternat-
ing gradient scheme was adopted. At step 1, the gradients were computed
and summed over all the notched-noise masker conditions and the frequency
weights R0(f) were updated. At step 2, the gradients were computed over the
maskers with a notch of varying amplitude and the masking I/O function was
updated. At step 3, Q10 was updated using the the maskers with a varying
notch width. The same steps were then repeated about 100 times. The opti-
mization was done separately for each CF probed. However, some parameters
could be shared and optimized jointly – in particular, the frequency weights
R0(f) – using the distributed communication package of PyTorch. The param-
eters were initially set manually or set at plausible values; e.g., Q10 was set to
fit the curve Q10 = 2(f/1000)0.5 loosely matching AN data [25], before being
fine-tuned by the optimization algorithm. Since the cost function is not guar-
anteed to be convex with respect to the model parameters, and the algorithm
can be stuck in local minima, several initializations were tried. For each run, a
visual verification of the result was done; if the model did not achieve a close fit
of the masking-release waveforms on the varying notch amplitude conditions,
the initialization parameters were adjusted accordingly. Further discrimination
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Fig. 3 Example of CAP data and derivation of ∆CAP (t). Left: forward-masked
CAP responses to 80-dB (peSPL) clicks. The masker presents a 2-kHz notch of vary-
ing amplitude around 5 kHz (masker profiles are shown at the top center of the panel).
Right: Corresponding masking releases, considering the no-notch condition as reference
(∆CAP (t) = CAPmasked(t) − CAPmasked,b(t)). CM=cochlear microphonics. The notch
attenuation goes from 15 to 0 dB (REF) in 3-dB steps.

between fine-tuned models was done by selecting the one associated with the
minimum cost function.

3 Results

3.1 Estimation of input-output masking curves

Figure 3 shows an example of CAP responses in the presence of forward-
maskers with a notch of varying amplitude. The right panel of the figure shows
the corresponding ∆CAP (t) waveforms derived from the forward-masked
CAPs by subtracting the reference response. The maximum peak-to-peak (p-
p) amplitude of the masking-release ∆CAP is approximately a third of the
p-p amplitude of the baseline masked CAP ( CAPmasked,b; response associ-
ated with the no-notch condition), which in turn accounts for about half of the
p-p amplitude of the unmasked CAP (recorded in the absence of a forward-
masker; not shown). A first indication of the masking input-output curve –
the amount of masking as a function of cochlear-filter output intensity – is
provided by the measure of reduction of the ∆CAP p-p amplitude when the
masker notch attenuation is progressively decreased (Fig 4a). In reality, the
relationship between the reduction of the CAP peak amplitude and the under-
lying masking I/O curve is not guaranteed to be linear, because the masking of
the CAP also depends on the spread of the cochlear excitation pattern, which
differs for each masker. For this reason, the determination of the reduction
of the CAP amplitude serves only as a first approximation of the parametric
masking I/O curve, which is then fine-tuned during the optimization proce-
dure along with the other parameters. The masking I/O curve at CF=5 kHz
after optimization (dashed line) is also shown in Fig 4a, clearly deviating from
the initial curve. The other curves for the same animal at different CFs are
shown in panel B. We did not find a regular pattern in the changes of the I/O
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Fig. 4 Masking input-output (I/O) curves. a. Amount of masking at CF=5 kHz as esti-
mated by the peak-to-peak (p-p) amplitude of the responses represented in Fig 3 (masker
with a 2 kHz-wide notch centered at 5 kHz). The x-axis refers to the power spectral density
in dB SPL within the notch. The purple cross corresponds to the reference condition (i.e.,
no-notch condition, matched to 100% masking). The fit to this data using a Weibull CDF is
shown, as well as the fit after fine-tuning the model (dashed line; see text for discussion of
why this curve is different from the p-p amplitude data), considered to better approximate
the underlying masking I/O function of the compound response of ANFs tuned to CF. b.
Masking I/O curves (Weibull CDFs) for the same animal at every CF after fine-tuning the
model.

curves with CF considering all the animals in the study. Note that since the
I/O functions were computed using the notched-noise maskers, the amount
of 0% masking does not necessarily mean that no masking occurred for that
level but rather that there was no additional masking relative to the minimum
masking condition (masker presenting a wide notch with 35-dB attenuation).

3.2 Estimation of latencies and frequency weights

Figure 5 shows the estimated latencies for the same chinchilla using the nar-
rowband analysis method. Although the relative errors appear to be larger at
high frequencies, it is the deviations from the power law at lower frequencies
(deviations of 0.15 ms for this animal at 1 kHz, up to 0.3 ms in another ani-
mal) which have a greater impact on the model performance. Note that to
obtain the CAP peak latencies, it is necessary to also take into account the
peak delays of the estimated unitary response, shown for the same animal in
Fig 6a. The estimate unitary response u keeps the biphasic shape of the spike
unit response typically reported [31], but is repeated at least twice, with the
two first negative peaks separated by 0.8 ms. The second peak has been seen in
other studies and partly attributed to the phenomenon of ‘double-spiking’, i.e.,
the firing of ANFs immediately after the refractory period [28, 35]. However,
this phenonemon is not systematically seen in the PSTH of ANFs in response
to clicks [36, 37]. Another reason may be the presence of sub-threshold elec-
trical resonances in the auditory nerve peripheral dendrites [38]. Interestingly,
this figure does not exhibit significant variations in the shape of the unitary
response, but small changes with a trend consistent with decreasing CFs can
be observed at 2.2 and 3 ms. These changes could be explained by larger group
delays for apical cochlear filters (i.e., a slower build-up of response intensity),
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Fig. 5 Estimation of the place-latency relationship. a. Masking-release waveforms ∆CAP
for the high-pass noise maskers. The cut-off frequency goes from 10 kHz to 1.5 kHz (REF:
broadband noise, cut-off frequency 200 Hz). The responses display a shift in the peak latency
(N1) that follows the same trend as the cochlear traveling wave. The responses for 8 out
of 12 high-pass noise maskers are shown. b. Estimated latencies as a function of CF (green
crosses, log-log scale) from the data represented in panel A. Fit (dashed line): power law,
CF = 11.6 (t− t0)−0.64, with t0 = 0.83 ms (standard error: 0.05 ms; note: to interpret the
value of t0, one also has to take into account the timing of the unitary response, see Fig 6a).
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Fig. 6 Other ancillary parameters of the model. a. Estimated unitary responses u cor-
responding to the weighted average of deconvolutions of ∆CAP responses (notched-noise
maskers with a varying notch attenuation) with their associated masking-release patterns.
The estimated unitary responses have been normalized to have the same baseline-to-peak
amplitude. b. Estimation of the frequency weight distribution R0(f) (top) representing the
relative CF contributions to ∆CAP . The weights below 1.5 kHz and above 8kHz (dashed
lines) are a result of extrapolation and do not correspond to real data points. The asso-
ciated distribution in the latency domain is shown (bottom). The conversion from CF
to latency was done using the relation CF (τ) = B(τ − t0)α+, with the change of variable

R0(f)df = R0(f)Bα(τ − t0)α−1dτ = R0(τ)dτ .

hence a prolonged peak in n∆PST for lower CFs in Equation A2. A fast anal-
ysis based on the deconvolution of the unitary responses at each CF with the
unitary response at CF=8 kHz supports this hypothesis.

Fig 6b shows the estimation of the frequency weights R0(f) representing
how different CFs contribute to ∆CAP relative to each other. The distribution
of weights is also shown as a function of latencies using a change of variable
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Fig. 7 Fitting of ∆CAP (t): results. a. Two examples of fits of ∆CAP (t) for two notched-
noise maskers after parameter optimization. The first masker belongs to the varying notch
width type, while the second masker belongs to the varying notch attenuation type. Masking-
release excitation patterns are shown in dashed blue (arbitrary scale and zero for y-axis).
b. Synthesis of errors and ∆CAP RMS amplitude values (computed on the 100% region
of the Tukey window after pre-processing of the data) at the different CFs from the same
animal. The squared errors are averaged across all conditions corresponding to notched-noise
maskers with a notch centered around CF.

(panel B, bottom). The gradual decrease of R0(f) with CF was expected since
the distribution of the preferred frequency of ANFs is denser at low frequencies
as a result of the exponential relationship between cochlear place and CF.
However, as shown in Fig 6b, R0(f) exhibits in addition two narrow dips
(2.5 kHz and 6 kHz) that hinder the estimation, not only of the frequency
weights, but also of the other parameters of the model at the corresponding
frequencies. In the same time, since R0(f) is estimated as a sum of sine and
cosine functions, oscillations in the approximation of R0(f) can affect the
prediction of other model parameters. To deal with this issue, we adopted
a strategy consisting in approximating R0(f) with low Fourier modes only
(m = 4) at the initialization of the optimization procedure, then increasing
the maximum mode (m = 10) during gradient descent. Most of the chinchillas
presented the same type of distributions, with an overall decreasing trend for
R0(f) and one or two relatively narrow dips, but the dips were not always
found at the same frequencies across animals. We do not have a definitive
explanation for the presence of dips in R0(f), but a speculative hypothesis is
that they result from the three-dimensional spiral cochlear geometry. Previous
studies have suggested that the geometrical configuration of the cochlea could
account for the presence of dips in the spatial contributions to the cochlear
microphonic [39]. However, the lack of understanding regarding the spatial
origin of the CAP adds an additional layer of uncertainty to this explanation.
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3.3 Fitting of ∆CAP and estimation of frequency
selectivity

Figure 7a shows how the model fit the experimental data for two masking
conditions. Panel B is a synthesis of the prediction errors as a function of
CF for the same animal. In most cases, more than 90% of the variance was
accounted for by the model. Remarkably, for some CFs, the prediction error
almost reached noise level (after pre-processing). Equally robust fits were also
obtained for the other animals in the study.

Finally, we present the results of the estimation of frequency selectivity,
which was the main goal of the present study. Fig 8 shows the fitting error for
∆CAP for CF=6 kHz as a function of model filter 10-dB bandwidth for all
chinchillas. The fitting error is computed on the the maskers presenting a vary-
ing notch width around CF=6 kHz which were designed to estimate cochlear
frequency selectivity. To plot this figure, the model parameters were found by
gradient descent and considered fixed except for the 10-dB bandwidth which
was varied from 500 Hz to 5 kHz. The bandwidth minimizing the prediction
error provides an estimate of the 10-dB bandwidth at CF, as shown by the
arrow for one of the animals. Two curves exhibit a larger curvature at their
minimum point, showing that the data collected from different animals do not
always provide the same amount of information about Q10 (in the sense of
Fisher information). For each chinchilla, we also estimated Q10 as a function
of CF using a RBF network, to take advantage of the assumed smoothness and
regularity of the quality factor with respect to CF. These regressions are shown
in Fig 8b, along with their average and standard deviation across animals. An
average of Q10 values derived directly from AN tuning curves is also provided
for comparison [25], highlighting the close match between the two datasets.

4 Discussion

4.1 Suitability of the convolution model for
forward-masked CAPs

Our approach to fit forward-masked CAP responses with a differentiable
convolution-based model led to accurate predictions of forward-masked CAP
waveforms. The generation of the waveform estimates relied on a consistent set
of parameters (including cochlear frequency selectivity), which were estimated
by gradient descent (parametric masking I/O function, frequency weights,
quality factor Q10) or by a specific procedure (latencies and unitary responses).
More than 90% of the variance of the masking-release waveform ∆CAP (t) was
explained by the model considering the Gaussian notched-noise maskers, in
most animals and CFs. Note that this prediction error is calculated without
cross-validation, so that a part of the performance of the model could be due
to overfitting the data. However, the number of maskers divided by the num-
ber of reference CFs (155/7=22.14) is relatively large compared to the number
of effective parameters by CF (∼ 6, excluding the unitary response estimated
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Fig. 8 Estimation of the frequency selectivity. a. Plot of the fitting errors of ∆̂CAP as a
function of model 10-dB bandwidth for each chinchilla. The minimum error corresponds to
the estimate of the 10-dB bandwidth using gradient descent (e.g., the estimated bandwidth
for Q393 at 6 kHz is 1.66 kHz). The error was computed over the responses corresponding
to the notched noise maskers presenting a varying notch width around CF=6 kHz. The data
for chinchilla Q432 (dashed line), characterized by a lower signal amplitude, was multiplied
by 5 to match the scale of the other plots. b. Synthesis of the estimates of the quality factor
Q10 as a function of CF. Crosses correspond to the estimates using gradient descent for each
CF independently; solid lines correspond to estimates using a regression technique (RBF
network) during the optimization of the model parameters. The gray shaded area shows the
average and standard deviation of the regressions (solid lines). Average data from published
ANF recordings in chinchillas [25] are given for comparison (dashed purple line) to support
the accuracy of the current approach.

from a weighted average of the CAP waveforms). The interactions between
the variables of the model are also limited thanks to the design of each type
of masker to estimate specific parameters (i.e, the high-pass noise maskers are
used to estimate the parameters of the place-latency model; the maskers with
a varying notch amplitude are used to estimate the masking I/O function,
etc.). These two factors combined reduce the potential for overfitting.

One of the underlying assumptions of the convolution model was that
applying different degrees of masking by manipulating the masker notch would
substantially change the amplitude of the masking-release waveform ∆CAP ,
but not its overall shape (Appendix A). We found that it was indeed the case,
as shown for example in Fig 3 (right). However, we noticed an exception dur-
ing a pilot experiment where a reduction in the masker notch attenuation from
15 dB to 6 dB resulted in an additional 0.1 ms delay in ∆CAP . We attributed
this observation to the lower probe sound level that was used for this experi-
ment compared to subsequent sessions, suggesting the importance of using a
loud probe to obtain a sufficiently time-localized PSTH and mitigate this issue.

In the convolution model, the latencies were related to CF by a power-law.
Although it captured the overall trend well, the local dependence of latencies
on CF was not always properly described by a single power-law model fitted
over the entire range of CFs. In addition, the latencies were small above CF=4
kHz (<0.1 ms, Fig 5b) relative to the width of the unitary response, therefore
the relevance of the convolution model could be questioned for high CFs. A
simpler model in which all the contributions of higher CFs are considered
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synchronous would probably equally well describe the ∆CAP masking-release
waveforms. However, the convolution model remains robust when the latencies
are of small magnitude and can provide a more accurate model for lower CFs
where the latency differences are more pronounced. Latencies could also show
greater variations when considering other animal species.

The fitting of the ∆CAP waveforms after the adjustment of the model
was remarkably accurate, but the estimation procedure presented several
challenges. The fact that the model relies on a relatively large number of
parameters, especially if we include all the possible dependencies on CF, can
make the optimization cumbersome. The optimization of the model is however
facilitated by the existence of new elegant libraries for automatic differentia-
tion. We found that the main difficulty regarding the estimation of the different
model parameters was the determination of the frequency weights R0(f). The
model would be greatly simplified if we could assume that different CFs con-
tribute to ∆CAP with the same magnitude, but we found that it was not
the case. We showed one extreme case in Fig 6b, where two narrow dips (at
2.5 kHz and 6 kHz) were present in R0(f). The estimation of R0(f) is still
possible with regularity assumptions and notched-noise maskers with notches
distributed over the entire range of frequencies. However, if the dips are too
steep, the estimation of the frequency weights and of the other parameters can
be affected. As potential evidence, the largest deviation between Q10 values
derived from AN tuning curves and those obtained with our estimation proce-
dure (Fig 8b) was observed at 2.2 kHz for the animal presenting a dip around
this frequency (blue cross). By using a regression technique for the estimation
of Q10, we can however exploit the regularity of the quality factor with respect
to CF to still provide a reasonable estimate of frequency selectivity (blue solid
line in Fig 8b).

4.2 Estimation of frequency selectivity using
forward-masked CAPs

We found a good agreement between the estimates of the quality factor aver-
aged over the 4 experiments for which we had complete data (Fig 8) and
published values derived from the collection of many ANF tuning curves in
chinchillas [25]. For one animal (chinchilla Q395), single-fiber auditory-nerve
recordings were conducted for another experiment after the end of the col-
lection of the CAP responses. The tuning-curve Q10 factors from the ANF
recordings were close to the Temchin et al. (2008) data, but the estimate of
Q10 using forward-masked CAPs followed a non-monotonic trend not seen in
the data (blue line, Fig 8b). This suggests that, while the results matched pub-
lished ANF data when averaged over experiments, the method is not robust
enough to provide an exact estimate at an individual level. Overall, it is nec-
essary to exercise some caution when interpreting the results, despite the
striking similarity observed between our averaged estimates and the averaged
data from Temchin et al. (2008). Indeed, several factors add some uncertainty
to the comparison of quality factor estimates: a) there is a significant spread
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of Q10 values when examining individual ANF tuning curves [40], and their
measurements typically involve the use of low-intensity tones; b) tuning-curve
estimates employ an iso-response method, while our approach is closer to an
iso-input method: this is known to have consequences for the estimation of
frequency tuning [6, 41]; c) the number of experiments conducted here was lim-
ited to 4. Given these factors, the main conclusion is that the two averaged sets
of data fall in the same range of values and have the same CF trends, rather
than indicating outstanding accuracy in predicting absolute Q10 values using
our method. Despite these potential limitations, the accuracy of our method
in overall values suggests that it may be highly valuable as an evoked-response
method for comparing AN tuning across hearing-loss etiologies and/or across
species without requiring single-unit data.

Our experimental approach is akin to the experiments of Verschooten and
colleagues [4, 18] on the estimation of cochlear tuning – their work was in
turn an improvement of experiments using forward-masked CAPs that were
conducted in the 1980s [15, 17]. The estimation method used by Verschooten
et al. involved establishing iso-response curves for masker level versus masker
notch width – the response criterion being that 66% of the initial CAP ampli-
tude had to be restored. A measure of tuning was derived from these curves
by considering the 10-dB bandwidth – reduced to a single auditory filter
model, this measure can be seen as the bandwidth encompassing 90% of the
frequency response power spectrum (called BW90 in other works [42]). The
main advantage of their technique compared to ours is that it did not require
the assumption that the amount of masking of synchronized ANFs is driven
by input-output curves that are to be determined. Rather, their measure of
tuning was considered as an empirical quantity, and assumed to be propor-
tional to the 10-dB bandwidth of ANF tuning curves. They found a good
agreement between the two quantities after a constant correction factor was
applied. However, the conversion factor from CAP to ANF data was not the
same for every species and was smaller for small mammals. In addition, the
correction factor for macaques was not constant as a function of CF (S5 Fig
in [4]). It is therefore not clear how the derived measure can be interpreted, as
it may be affected differently from one species to another by different factors
(e.g., differences in masking-release patterns). By contrast, the strength of our
method lies in the mathematical modeling of the forward-masked CAPs that
seeks to capture the essential physiological aspects relevant to the amplitude
and shape of the CAP waveforms. Our model incorporates the complex rela-
tionship between frequency selectivity and the effect of masker manipulations
(e.g., increasing notch width) on the forward-masked CAP waveforms. This
limits the reliance on an empirical correction factor. We were able to fit ANF
tuning data without any additional factor (Fig 8) on the experimental data we
collected. Further testing of our method’s accuracy would require additional
experimental work and analysis involving other species. The convolution-based
method could have other advantages. Since the entire ∆CAP signal is used
instead of only the CAP peaks, one can expect the method to be more robust
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to noise. Furthermore, it exploits all the available data, whereas the ‘fast’ pro-
cedure in Verschooten et al. searches for a particular masker level meeting the
masking criterion, thus potentially wasting measurement points. Beyond these
aspects, a potential of our analytical approach is that the mathematical model
and experimental paradigm could be adapted to study more complex aspects
of cochlear signal processing, such as compressive nonlinearities, as mentioned
in the next paragraph.

4.3 Limitations related to the simplified underlying
auditory model

A few difficulties associated with the model were mentioned throughout
the paper, including changes in the model parameters with CF that make
estimation more challenging. Another set of limitations is related to the over-
simplifications of the model to describe the behavior of the cochlea. One major
drawback of the model is that it assumes that the cochlear frequency decom-
position, implemented by a filter bank independent of sound level (Fig 2), is
linear. However, this assumption is not valid for the healthy ear, since compres-
sive nonlinearities decrease the cochlear frequency selectivity when intensity
is increased [5]. The non-linearities also modify the input-output functions
depending on the amount of suppression [14]. Therefore, including these non-
linear effects in the model or adapting more complete computational models
of the auditory periphery for the proposed paradigm (e.g., BEZ model [29])
could provide insights into how compressive nonlinearities affect cochlear pro-
cessing, but given the major extension in scope, is left for future developments.
To study nonlinear effects, a greater variety of masking conditions would
have to be employed during data collection (e.g., various level or asymme-
try of notches relative to one CF); however, this additional set of conditions
is certainly possible. As an example, Verschooten et al. evaluated the level
dependence of cochlear frequency selectivity in cats by presenting maskers of
various intensities [18].

Other aspects of the auditory model considered in this work also cor-
respond to oversimplifications of cochlear signal processing. Auditory filter
frequency profiles are in reality asymmetric, and the lower and upper sides are
not affected the same way by nonlinearities [43]. We focused on the ‘tip’ of the
auditory filters, which can be accurately described by gammatones – we also
tried Gaussian filters and did not find significant differences using one model
or the other. But auditory filters also present a low-frequency tail, the latter
showing different attributes depending on filter CF [25]. In addition, the CF
of cochlear filters change with the degree of compression [44]. Future work is
needed to explore whether the proposed method could be extended to include
these different aspects.

Compared to non-invasive techniques for measuring cochlear frequency
selectivity (such as OAE-based methods or psychoacoustic experiments based
on masking), estimation methods using forward-masked CAPs have the advan-
tage of being more closely related to AN activity. This advantage would
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be especially meaningful if more complex aspects of cochlear processing,
such as compressive nonlinearities, could be integrated in the model. In
the transition of the proposed method to human subjects, the question of
the quality of the CAP measurements also gains importance. While recent
studies using tympanic membrane show promise for obtaining a reasonable
SNR [45, 46], extra-tympanic measurements alone may be too limited to
provide exploitable data. More invasive alternatives also exist for translat-
ing the method to humans, such as trans-tympanic measurements [4, 11] or
intracranial recordings during surgeries for neurovascular conflicts [47–49].

Supplementary information.

� Online Resource 1: Simulation of the effect of masking on the compound
response of AN fibers. A/ Post-stimulus time histograms (PSTHs) of a pop-
ulation of ANFs using the Bruce et al. model (2018). The bar plots are the
compound PSTHs in response to a 90 dB SPL click presented 5 ms after
a 30-ms white Gaussian noise masker with a masker level varying from 10
dB to 80 dB. Simulation parameters: CF = 4 kHz, population of 32 ANFs
(low spontaneous rate LS: 6, MS: 6, HS: 20); N reps = 400 (clicks were of
alternating polarity); bin interval: 0.1 ms. B/ Difference of the compound
PSTHs shown in a/ taking as reference the response to masker with the low-
est level. C/ Difference in spike rate for four masker sound levels reproduced
from the simulated PSTHs, this time with the highest masker intensity as
reference. When normalized, the PSTH differences correspond to n∆PST
in Appendix A (this figure shows that the ∆PST s have similar shapes but
different amplitudes). D/ Convolution of the PSTHs differences (shown in
C/) with the spike unit response in Wang 1979 (Fig 14). It simulates ∆CAP
for different masker sound levels, however considering only one frequency
channel (CF=4 kHz).

� Online Resource 2: Diagram of computations (divided in two parts A and
B) for a masker with 2 bands implemented using PyTorch leading to the

generation of the estimated CAP masking-release ∆̂CAP (t).The variables
that are updated during the optimization procedure (gradient descent) are
represented in gold font.
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Appendix A Breakdown of the convolution
equations

In this appendix, we take a closer look at the convolution equations
(Equations 1 and 2), since the assumptions justifying these formulas were
implicit in the main body of the paper.

We first start by considering the equation for the non-masked version of
the CAP (Eq 1), recalled here:

CAP (t) = E ∗ u0 (t) .

This formula can in fact correspond to two different approaches, depending
on how the unitary response is defined. If the unitary response is the same as
the spike unit response, then E is the compound post-stimulus time histogram
(PSTH) of all ANFs. This is consistent with several studies that use elaborate
computational models of ANF activity to simulate compound PSTHs then
generate CAP waveforms [20, 50]. This differs however from our approach, as
we actually never try to reproduce the compound PSTH. In this sense, our
work is closer to a second approach [26, 27], where E is defined as an excitation
spread over latencies with a one-to-one mapping of latencies and CFs. This
approach necessarily requires that the spike-time jitter of ANFs tuned to a
given CF is encompassed in the unitary response since it cannot be included
in the excitation pattern.

To make the above distinction more explicit, let us consider nPST , the
compound PSTH of ANFs tuned to a single CF normalized by the total num-
ber of spikes. We also assume that only a limited segment of the cochlear
partition contributes to the CAP waveform, so that nPST can be considered
independent of CF. We can then write a double convolution equation for the
CAP waveform:

CAP (t) = ︸ ︷︷ ︸
cPST

E ∗
u0︷ ︸︸ ︷

nPST ∗ UR (t) (A1)

where nPST, cPST stand for the normalized and compound PSTHs, and UR
is the spike unit response. In this formula, we have used notations similar to
Bappert et al. [27], which describes the double convolution approach in more
details. If nPST is left outside the function to the right of the convolution,
the unitary response aligns with the spike unit response, corresponding to the
first approach of simulating the compound PSTH. In our case, however, the
unitary response u0 takes into account the spike unit response as well as the
normalized spike histogram nPST .

Now let us take a closer look at the equation for the masked version of the
CAP, specifically the masking-release ∆CAP (t), which is the real focus of this
paper. Since we consider masking releases associated with the manipulation
of a narrow spectral notch, the assumption that only a limited segment of the
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cochlear partition contributes to ∆CAP (t) is always justified. We can therefore
approximate ∆CAP (t) with an equation similar to Eq A1:

∆CAP (t) = ︸ ︷︷ ︸
c∆PST

R ∗
u︷ ︸︸ ︷

n∆PST ∗ UR (t) = R ∗ u(t) . (A2)

We recall that R(τ) is the masking-release pattern and u is the unitary
response – here, the zero subscript has been removed to distinguish the unitary
response from the one in Eq A1, defined differently. Again, u is considered as
the compound of the spike unit response and the difference in the PSTH of a
population of synchronized ANFs normalized with respect to the amount of
masking (n∆PST ). If, on the other hand, the unitary response was identical to
the spike unit response UR, the function to the left of the convolution would be
the difference in the compound PSTH induced by masking (c∆PST ). We are
not interested, however, in the actual decomposition of u, justifying that the
simpler equation ∆CAP = R ∗ u is kept in the main body of the paper. It is
worth noting that, in this equation, we assume that n∆PST is independent of
the amount of masking. If a click probe of medium-to-high intensity is used, the
individual PSTHs are characterized by a sharp predominant peak restricted on
a short time interval [28]. As a result, the changes in the shape of n∆PST are
expected to have a minimal effect on the CAP; however, the amount of masking
applied to the PSTHs will have a significant impact on the CAP amplitude.
Prior to any experiment, we tested whether this hypothesis was reasonable
with a well-established computational model of ANF responses (BEZ model
[29]). This analysis is left as supplementary material (Online Resource 1). As
for the spike unit response UR, studies have typically reported that it can be
considered independent of the ANF best frequency or spontaneous rate [30–32].

Appendix B Gammatone model

This appendix contains the computation of the average intensity at the output
of a gammatone cochlear filter:

Note: In this paragraph, τ does not have the same use as in the main part
of the paper where it is a variable for latencies. Here, it refers to the time
constant of the gammatones.

The k-th order gammatone, characterized by an envelope proportional to
tk−1
+ e−t/τ , is defined in the frequency domain (complex version, w.l.o.g.) by:

|wCF (ω)|2 =

(
2k − 2

k − 1

)−1

22k−1τ
[
1 + τ2(ω − 2π CF )2

]−k
.

The average quadratic response considering a single-band Gaussian-noise
masker is:

< A2 >= S0

(
2k − 2

k − 1

)−1

22k−2π−1τ

∫ 2π(fmax−CF )

2π(fmin−CF )

[
1 + τ2ω2

]−k
dω
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< A2 >= S0

(
2k − 2

k − 1

)−1

22k−2π−1

∫ arctan(2πτ(fmax−CF ))

arctan(2πτ(fmin−CF ))

cos2(k−1) θ dθ .

The last integral is then computed by writing

cos2(k−1) θ = 22−2k
[∑k−2

l=0

(
2k−2
l

)
2 cos((2k − 2− 2l)θ) +

(
2k−2
k−1

)]
.

In the case of a masker presenting multiple bands, the expressions for each
band simply add up.

Note: The 10-dB bandwidth is related to τ by BW10τπ =
[
101/k − 1

]1/2
.
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