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Abstract

Observations from optical coherence tomography (OCT) have revealed a velocity gradient
across the reticular lamina in response to sounds [Cho and Puria, Scientific Reports, 12, 18715
(2022)]. Since viscoelastic forces depend on velocity gradients, this finding suggests that OHC
activity may influence viscous loss in the cochlea. Here, we propose a candidate mechanism
for regulating traveling-wave viscous dissipation which involves the tectorial membrane (TM).
We hypothesize that the velocity gradient generated in the OHC region, combined with TM
structural properties, can reduce transverse deformations in the TM and, subsequently, trans-
verse viscous damping. Based on this hypothesis and a simplified mechanical model, we derive
a formula for an equivalent basilar membrane (BM) admittance in both passive and active
scenarios. We use the WKB approximation to simulate traveling waves in response to tones
at different stimulation levels. The calibration of the model is based on OCT data from mice,
including data on TM motion. Our simulations show that modulating the viscous load affects
the traveling wave in the peak region, with changes in BM velocity magnitude of up to 10 dB.
The inclusion of a more classical anti-damping term is necessary to capture the full dynamic
range of the response gain. With the textbook view of OHCs acting directly on the BM under
re-evaluation in light of recent OCT data, the control of viscous damping in the TM emerges
as a viable candidate for a second mechanism governing traveling-wave amplification.
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1. Introduction

In the healthy mammalian cochlea, vibrations evoked by tones exhibit characteristics that
vary with sound intensity level. At behavior thresholds, the gain of basilar membrane (BM)
displacement at the characteristic place is at least 30 dB higher than for high stimulus intensities
[1, 2, 3, 4, 5, 6]. This gain decrease has alternately been interpreted as indicative of the
amplification of low-intensity traveling waves (e.g, [5, 7]), or as evidence of the compression
of higher-intensity waves [8]. The exact mechanisms involved in this nonlinear process —
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also called the “active process” of the cochlea — are partly unknown or still under debate,
although it is widely accepted that the electromotile outer hair cells (OHCs) play a critical
role [7, 9, 10, 11]. A commonly cited mechanism underpinning the active process is the push-
pull action of OHCs. This mechanism suggests that the cell bodies of the OHCs contract
when the BM goes up, in response to well-timed hair cell deflections caused by shear motion
between the tectorial membrane (TM) and the reticular lamina (RL). As a result, OHCs would
exert a pulling force on the basilar membrane (BM), amplifying its upward motion [10, 12].
However, recent experimental data, including observations from optical coherence tomography
(OCT), have revealed unexpected motion patterns in the organ of Corti, with movement in the
OHC region showing more independence from BM motion than previously generally assumed
[2, 4, 13]. OCT data has also raised questions about the timing of the OHCs to operate at
the correct phase [14, 15], since new measurements indicate a slight phase lead of the RL over
BM at frequencies below the characteristic frequency [16, 17], rather than the quarter-cycle
phase lag predicted by the push-pull hypothesis [15]. These patterns appear at odds with the
apparent simplicity of the push-pull action of OHCs, leaving room for alternative, less direct
explanations of the active process [14, 15].

This paper introduces the hypothesis of an additional role for OHCs in controlling trans-
verse viscoelastic damping occurring in the TM. The existence of a ‘friction control’ mecha-
nism capable of modulating cochlear gain has already been proposed by some authors [8, 18].
The hypothesis presented here, however, originates from two other recent studies. The first
is a modeling study that described the opposing roles of two hydrodynamic effects — ‘fluid
focusing‘ and fluid viscous dissipation — on the traveling wave [19, 20]. Both effects are
wavelength-dependent and increase in strength in the short-wave region, where the traveling
wave in response to a tone reaches its peak amplitude. This work highlighted the potential role
of viscosity in stabilizing cochlear amplification and provided a simple mathematical frame-
work to include viscous dissipation in simulations of cochlear pressure waves using the WKB
approximation. The second study is a report of OCT data showing the existence of a velocity
gradient in the OHC region during auditory stimulation in live gerbils [16]. The authors showed
that the part of the RL above the innermost row of OHCs moved with lower amplitude than
for the two other rows by a factor of about 10 dB. This observation was valid on a wide range
of frequencies around the characteristic frequency (CF).

Our premise is that the radial gradient of transverse velocity observed in the OHC region
can modulate transverse deformation in the TM, thus affecting viscoelastic loss in the TM
mechanically coupled to the organ of Corti and BM. In this paper, we explore the implica-
tions of this hypothesis through a formal analysis carried out under simplifying assumptions,
followed by numerical simulations of tone-evoked cochlear waves using the WKB method. Our
approach focuses on the traveling wave, assuming that its critical element is the BM moving
transversely. In particular, the complex interplay between the active process, TM (radial) load,
and hair cell deflection, is beyond the scope of this study. This simplified modeling approach
allows us to present an overview of important ideas related to the proposed viscous undamping
mechanism, without addressing all the micromechanical or biophysical details of how it could
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be implemented in the cochlea.

2. Methods

2.1. Proposed mechanism

To limit the description of the proposed mechanism to its core ideas, we make several
simplifying assumptions. We consider that the TM is a nearly incompressible material (Poisson
ratio close to 0.5), allowing viscous stresses to be expressed as:

τ = µTM

[
∇v + (∇v)T

]
, (1)

where µTM represents the dynamic viscosity of the TM and ∇v is the gradient of velocity.
We only consider the transverse components of the velocities — and the transverse derivatives
of the (transverse) velocities for the gradients. Radial variations are ignored, except in the
next subsection on the analysis of deformation modes. We further assume that the TM has a
rectangular shape with the lower and upper surfaces parallel to the BM (i.e., orthogonal to the
transverse direction).

Figure 1 shows a schematic of the hypothesized velocity gradients and associated viscous
forces at play. Note that in this initial modeling approach, we omit any consideration of phase.
We assume that the RL above the OHCs and the TM move in phase with the BM. This is a
simplification, as a phase shift of the RL relative to the BM is observed in the best frequency
region [16]. The passive and active scenarios are described below.

1) Passive case (Fig. 1 left): In 2-D box models of the cochlea, the fluid velocity decays
exponentially in the short-wave region with respect to the distance from the BM [10, 20]. In
absence of OHC activity, we assume that the velocity in the TM follows the same decreasing
trend. When the BM moves up, this results in a gradient of velocity ∇v directed toward
the BM (negative gradient). To simplify, we consider that the motion is characterized by an
irrotational flow, so that the the viscous stress tensor has zero divergence within the TM. In
this case, there is no contribution of viscous forces in the bulk of the TM, but the TM is still
subject to two normal viscous forces acting on its lower and upper surfaces, equal to:

2µTMSTM ∇v · n⃗ . (2)

STM is the area of the lower/upper surface for the longitudinal section under consideration,
and n⃗ is a unitary vector normal to the surface pointing in the direction of the TM body. We
neglect the viscous contribution from the scala media fluid as the TM viscosity constant is two
orders of magnitude higher than that of water [21]. On the lower surface, the viscous stress
gives rise to a damping force 2µTMSTM∇v opposing BM velocity (vBM ). Conversely, on the
upper surface, it generates an anti-damping force equal to −2µTMSTM∇v. However, as motion
decays with the distance from the BM, this second force is of lower magnitude than the first
one, resulting in a net damping effect.
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Figure 1: Diagram of hypothesized transverse velocity vectors (thick arrows), velocity gradients (thin blue
and orange arrows) and viscous forces (red arrows) associated with an upward motion of the BM, shown on a
simplified cross-section view of the cochlea. The TM is depicted as a rhombus for visualization, but is further
simplified to a rectangular shape in the main text. Left: In the passive case, a velocity gradient pointing
downwards generates opposing viscous forces on the lower and upper surfaces on the TM, resulting in net
viscous damping. Right: In the active case, the reduction of transverse viscous loss would result from the
cancellation of the transverse velocity gradient within the TM. This would be the consequence of the velocity
gradient observed in the OHC region (blue arrows) opposing the velocity gradient present in the passive state
(orange arrows).

2) Active case (Fig. 1 right): when the OHCs are active, we assume that the gradient of
transverse velocity observed across the RL, mechanically coupled to the TM via the OHC hair
bundles, can interfere with the velocity field described in the passive case. To describe the
result of this interference, it is helpful to represent the total velocity field as the sum of two
components — even though they may not be separable in reality — represented by the faded
blue and orange arrows on the diagram. The arrows correspond to two velocity fields that have
opposite contributions to the velocity gradient: one is the same as in the passive case (orange
arrows, positive velocity gradient), and the other is induced by the motion across the RL (blue
arrows, negative velocity gradient). Our assumption is that the sum of these two velocity fields
cancels the transverse velocity gradient within the TM, thereby suppressing the normal viscous
forces present in the passive case.
However, one may notice an inconsistency in this reasoning: we assume that the OHCs have an
effect on the transverse gradient of (transverse) velocity, while observations in the OHC region
demonstrate a radial — not transverse — gradient of (transverse) velocity. This apparent
discrepancy could be explained by the arrangement of radially-oriented collagen fibers within
the TM, which exhibit a downward inclination [22, 23] or even a more pronounced turn towards
the BM approaching the marginal zone [24]. Since the collagen fibers provide more mechanical
support compared to the softer gel-like matrix of the TM, the role of this configuration may
be to reorient the velocity gradient induced by motion across the RL from the radial to the
transverse direction. To illustrate this idea, let us consider a scenario where the only source of
TM motion is the OHCs attached to the TM marginal zone. If we assume that the velocity
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is uniform along each collagen fiber, the resulting velocity gradient stays perpendicular to the
fibers. In the marginal zone, this gradient is primarily radial, but as we move towards the limbal
region, it gradually shifts to a more transverse direction. Note that this explanation makes
the proposed mechanism internally consistent, but we did not test the underlying assumptions
experimentally or through additional modeling; hence, at this stage, the proposed mechanism
should only be regarded as a formal hypothesis.

2.2. Deformation modes in the TM

Several implications of the proposed mechanism can be inferred by trying to characterize
the motion of the TM in the passive and active scenarios. To carry out the analysis, a few
more assumptions are made. We consider that the TM impedance is dominated by mass and
viscosity at frequencies near CF in the marginal region. We consider that the flow in the TM
is incompressible and irrotational, and can be expressed with the gradient of a pressure field
satisfying Laplace’s equation. We further assume that in a cross-section of the cochlea, the
pressure p in response to a tone satisfies the same equation as the fluid above the BM in a 3-D
box model (p is in its complex version):

∆p = k2 p, (3)

where ∆ is the 2-D Laplacian, and k is the complex wavenumber. This equation assumes the
existence of a longitudinal compression wave in the TM: the relevance of this assumption is
discussed at the end of the paper. Solving this equation is difficult because it depends on the
geometry of the TM and on the pressure or velocity field in the surrounding fluid. However,
we can gain some insight from the following tentative approximation:

p1(r, z) ∝ exp(−kzz) exp(−krr) . (4)

In this formula, the decrease along the transverse direction mirrors the exponential decay
of fluid pressure above the BM in the short-wave region. The exponential factors for both the
radial and transverse directions have negative arguments, consistent with the radial motion of
the TM being outward as the BM moves upward [3]. The derivation of the vector field based on
this approximation can however only hold in the marginal region of the TM, as the increasing
Young’s modulus near the limbus [25, 26] restricts motion in that region.

Equation 4 is a solution to Laplace’s equation (Eq. 3) when k2z+k2r = k2. In the passive case,
we assume that kz = kr = k/

√
2. This corresponds to the hypothesis that radial and transverse

deformations have equal magnitude, which holds if any factor of anisotropy is disregarded. A
second argument is the observation that radial and transverse velocity in the TM, related to
the first derivatives of the pressure field, are almost identical in magnitude in the short-wave
region at high sound levels (Fig. 2C, OCT vibration data in mice). Eq. 4 will be useful to
derive an expression for the viscous stress acting on the TM in the passive mode.

In the active case, our hypothesis suggests that the transverse deformation of the TM is
suppressed. Therefore, we introduce a second mode of motion characterized by the absence of
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Figure 2: A., B., C.: OCT vibration data from Lee et al. [3]: displacement ratios in response to tones at
one cochlear place (CF = 10 kHz) averaged from n=6 CBA/CaJ mice. Ratios for both radial (subscript R) and
transverse (subscript T ) motions in 10-dB steps are presented. Standard errors (error bars) are shown for the
lowest and highest sound levels. D. In the numerical simulations, a represents the influence of the TM viscous
load on the BM admittance, which we set to vary with frequency and sound level (light to dark blue: 10 to 80
dB SPL). At a given sound level, a(f/CF ) is a sigmoid loosely fitting the radial-over-transverse displacement
‘boost’ in panel A (see subsection on deformation modes for further explanations).

transverse deformation. The corresponding pressure field is approximated by:

p2(r, z) ∝ (z0 − z) exp(−k′r r) , (5)

with zero second derivative along the transverse direction. The incompressibility (Eq. 3) is
expressed this time by k′r = k.

OCT data of TM motion in vivo is scarce due to the low reflectivity of the TM. However,
Lee et al. [3] provided data of TM motion in the mouse that could be consistent with the
existence of two deformation modes in the short-wave region (reproduced in Fig. 2). The
primary observation is that TM radial displacement, relative to BM transverse displacement,
is enhanced at low sound levels in specific frequency regions (Fig. 2A). Our analysis suggests
that TM radial motion is proportional to the radial derivative of the pressure field, equal to
−krp (for Eq. 4) or −k′rp (for Eq. 5) depending on the mode of motion. In the active mode,
k′r is equal to the wavelength k, which is higher than kr in the passive mode by a factor

√
2,
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Figure 3: Several diagrams showing the simplification steps leading to the modeling of the BM impedance with
lumped elements. A. Two degrees-of-freedom (DoF) view of cochlear micromechanics reducing the system to
two transverse velocities (vBM and vTM ). Red part=the stiff ‘frame’. DC=Deiter cell. B. Lumped-element
mechanical model. The TM impedance is limited to a damper. The mass of the system is reduced to MBM . C.
Electrical circuit analogy. In addition to the RLC elements corresponding to a passive harmonic oscillator, the
impedance includes a variable negative resistance, a velocity generator (simulating the vibration ‘hotspot’ [4] of
the OHC region), and a variable resistor modeling viscous damping from the TM load. The parameters a and
G (not homogeneous to mechanical resistance) in blue set the state of the BM impedance, transitioning from
passive to active states. In the numerical simulations, a follows the sigmoid functions plotted in Fig. 2D, while
G is linearly varied between two extremum values.

or +3 dB. This enhancement is a consequence of the near-incompressibility of the TM, and
can be interpreted as a conversion of deformation in both directions into radial deformation
alone when transverse deformations are suppressed by the active process. In this view, radial
deformations (proportional to k2) are doubled in magnitude from the passive to active state,
but radial motion (either defined by velocity or displacement) is proportional to k, which
explains why the enhancement factor is only

√
2. Assuming that the ratio of local pressure

to BM velocity remains the same, irrespective of the sound level, this would agree with the
observed enhancement of radial TM motion over transverse BM motion at low sound levels,
in the frequency region where amplification is thought to occur (light vs dark blue plots in
Fig. 2A).

A secondary, more speculative observation concerns the ratio of radial to transverse dis-
placement in the TM. At high sound levels, in the frequency region below CF (7 kHz to 10 kHz),
the two motion components are equal in magnitude (Fig. 2C, data averaged over several mice).
This is consistent with the characterization of the passive mode of motion (Eq. 4), which pre-
dicts similar amplitude for the radial and transverse components. In the active mode, however,
the radial and transverse velocities become uncoupled: deriving Eq. 5, we find that their ratio
is k′r(z0 − z), which depends on a free parameter z0. This implies that the individual velocity
components could be influenced by different factors. The radial deformations in our analysis
are connected to the existence of a compression wave in the TM (assumption underlying Eq. 3),
while transverse motion in the active state would be more tightly connected to the transverse
motion ‘hotspot’ [4] observed in the OHC region at low sound levels. This could explain why
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transverse TM displacement is significantly larger than radial TM displacement in the 7 to
10 kHz region at low sound levels (light blue plots in Fig. 2C).

Based on the above interpretation of the OCT data, we can evaluate at which sound levels
and in which frequency regions the active process is thought to be effective in suppressing
TM deformations. To do so, we introduce a variable a, ranging from 0 to 1, quantifying the
impact of the active process on the viscous load. a = 1 corresponds to the passive mode, where
transverse viscous damping remains fully intact, while a = 0 represents the most active state,
where TM transverse deformations and the related viscous damping are entirely suppressed.
Intermediate values represent linear combinations of both modes. At a given sound level, we set
a as a sigmoid function of f/CF , where CF is the best frequency of the BM response at hearing
threshold at one given cochlear location. Fig. 2D displays the functions a( f

CF ) corresponding
to the sound levels from the Lee et al. dataset, using the same color code. The sigmoid
parameters were adjusted based on our interpretation of the displacement ratio enhancements
shown in Fig. 2A. The rest of the paragraph describes the steps of the fitting process. First,
the values in Fig. 2A were divided by the values corresponding to the highest sound level. If
we denote the displacement ratio TMR/BMT by R, curves for R/Rpassive were then obtained.
Next, the values below 1 or above

√
2 were trimmed to have only values in the range [1,

√
2].

Each curve was then fitted by a function func(f/CF ) =
√
2 + (1 −

√
2) 1

1+exp[−P1·(f/CF−P2)]
with P1 and P2 determined using a least-squares method. After fitting, a was defined as the
logistic function appearing in func.

2.3. Mechanical model and BM admittance

In the rest of the Methods section, we describe how we simulated traveling waves using a
mathematical approximation while accounting for the proposed mechanism. The key steps are
outlined as follows:

1. Based on the analysis developed in the previous subsections, we derive an expression for
the viscous force generated at the TM surface.

2. We incorporate this viscous force into an equivalent BM admittance formula, motivated
by simple mechanical arguments.

3. We integrate the BM admittance into a transmission-line model and simulate traveling
waves in response to tones using the WKB approximation.

In this subsection we derive a formula for the BM admittance in both passive and active
scenarios (steps 1 and 2).

We start by considering a simplified model of cochlear micromechanics with two degrees
of freedom (DoF), corresponding to Fig. 3A. One DoF is the transverse velocity vBM and
the second is the transverse velocity of the reticular lamina vRL. The latter is assumed to
be identical to vTM , consistent with the motion between the TM and RL being essentially
radial [13]. In the absence of TM viscous load, we still assume the presence of a classical
anti-damping term, represented by a negative resistance in the BM impedance (Fig. 3C). We
do not specify the mechanism leading to negative damping, as our focus is on the hypothetical
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‘second’ mechanism controlling TM transverse damping. BM damping in the absence of TM
viscous load is denoted by Γ, and can be expressed as the sum of a passive and active term,
as in Sisto et al. (2021): Γ = Γp + Γa with Γp = ωBM and Γa = −GωBM . The variable G
represents the strength of negative damping achieved by the active process.

To incorporate the viscous forces acting on the TM in the BM admittance, we make the
strong assumption that these forces do not exert work on the RL in the reference frame of the
BM. This assumption is valid if OHC electromotility compensates for all the viscous load from
the TM, so that the quantity vRL − vBM remains of constant amplitude irrespective of the
amount of viscous damping. Conceptually, this translates into modeling the action of OHCs as
a ‘velocity generator’ (Fig. 3B), akin to a current generator in an electrical analogy (Fig. 3C).
The consequence of this assumption for the 2 DoF model is that the viscous forces acting on
the TM are entirely transferred to the BM mass moving with velocity vBM . Our model does
not make other assumptions on the mechanical coupling between the RL and BM. The route
of transmission could involve the RL and the pillar cells, or the OHCs and the DCs — or both
[13] — but it is not specified. We take this simplification one step further by considering that
vTM/vBM remains constant across stimulus frequency, effectively reducing the model to 1 DoF.
We consider, however, that the ratio vTM/vBM depends on the intensity of the stimulation (see
next subsection).

To evaluate the viscous force FV acting on the TM in the passive case, we use the analysis
of deformation modes that was presented in the previous subsection. By letting vTM be the
transverse velocity of the lower part of the TM, the exponential profile of the pressure field
over the transverse direction (Eq. 4) gives ∂uz

∂z = −kz vTM on the lower surface of the TM. On

the upper surface, Eq. 4 yields: ∂uz
∂z = −kze−kzHTM vTM , where HTM is the height of the TM.

Considering the simplified rectangular geometry described earlier and assuming once more that
the viscous stress is divergence-free within the TM bulk, we derive the viscous force as

FV = −2µTM STM (1− e−kzHTM )kz vTM . (6)

FV is the viscous force acting on the TM in the passive deformation mode. To include the other
modes, FV is multiplied by a, the variable introduced in the previous subsection. When a is
decreased from 1 to 0, the system goes from the fully active to passive mode of deformations in
the TM. In the simplified description of mechanics introduced above, the viscous force acting on
the TM is transferred to the BM with the same magnitude. The new viscous term is included
in a mass-spring-damper model which relates BM velocity to local forces:

SBM σBM (−ω2 + jωΓ + ω2
BM )

vBM

jω
= −pd(z = 0)SBM + aFV , (7)

where σBM is the BM surface density. The modified BM admittance is therefore:

YBM = − jω

σBM∆̃
with ∆̃ = −ω2 + jω

[
Γ + 2a

µTM

σBM
(1− e−kzHTM )kz

STM

SBM

vTM

vBM

]
+ ω2

BM , (8)
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where it can be noted that the admittance depends on the wavelength (with kz = k/
√
2).

The admittance can be modified by tuning G, a, or both: G is a scalar variable controlling the
classical damping term (with Γ = (1−G)ωBM ), and a is a function of frequency that sets the
strength of the non-standard damping term from the TM viscous load.

2.4. Numerical simulations

The framework for simulating vBM responses is a transmission-line model, where the fluid
impedance and the BM admittance serve as series and shunt elements, respectively [27]. The
model includes 2-D effects through the integration of pressure focusing [19] and cochlear guide
tapering. The corresponding equations are reviewed below.

Defining pd = p(z)−p(−z) as the pressure difference between the scalae above the BM and

the scala tympani, pd = 1/H
∫ H
0 pd dz as the averaged differential pressure and U =

∫ H
0 ux dz

as the volume velocity in the upper scalae, the equations on averaged pressure and volume
velocity are [28]:

H
∂pd
∂x

= −(ZfH)U (9)

∂U

∂x
= vBM = YBM pd(z = 0+) = αYBM pd , (10)

where H is the (semi-)height of the cochlea and Zf = 2jωρ
H . Note that in the first equation,

ZfH is independent of H. The second equation includes the factor α = pd(z = 0+)/pd, which
accounts for the focusing of the pressure around the BM in the short-wave region [19]. The
following formula can be derived for α considering a local solution to Laplace’s equation [28, 19]:

α =
kH

tanh kH
. (11)

Combining Eq. 9 and Eq. 10, a variant of Webster’s horn equation is obtained [29]:

1

H

∂

∂x

(
H

∂pd
∂x

)
= −ZfYBMαpd = −k2pd . (12)

A WKB approximation of the forward-pressure wave, solution of the equation above, is
[29]:

pd(x) = P0

√
H0

H

√
k0
k

exp

(
−j

∫ x

0
k(x′)dx′

)
, (13)

which can be evaluated by dividing the cochlear partition into Nsections and considering the
cumulative sum of k(x′) instead of the integral. The BM velocity can be derived from pd using
the relation vBM = YBMαpd.
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To apply Eq. 13 to our model, the wavenumber k must be determined. From the wave
equation (Eq. 12), we have k2 = ZfYBMα. Substituting the BM admittance with Eq. 8, we
get the dispersion relation:

k2 =
2αω2ρ

σBMH
(
ω2
BM − ω2 + jω

[
Γ + 2aµTM

σBM
(1− e−kzHTM )kz

STM
SBM

vTM
vBM

]) . (14)

To obtain a numerical value, we used the recursive procedure described in Sisto et al.
[19], empirically converging for the range of values of interest for the simulation of the traveling
wave. The procedure was initialized with the value obtained for a = 0 and α = 1 (non-recursive
formula). We then recursively updated k by taking the square root of the right-hand side in
Eq. 14. This operation was repeated 30 times.

Table 1 lists the model parameters for simulating the forward-pressure wave. When it was
possible, the parameters were set to reflect the anatomy of the mouse cochlea. This includes the
place-frequency mapping defined by a Greenwood function [30]. In the version presented in this
paper, the height of the cochlear ducts and the BM surface density are made place-dependent
with H ← ωBM

ω0
H0, and σBM ← ω0

ωBM
σ0. This choice corresponds to a tapered guide [29] with a

property of scaling symmetry on Zf and ZBM = Y −1
BM , i.e., both impedances can be expressed

in terms of the variable s = jω/ωBM [27]. Note that this does not imply that the full model
is scaling symmetric. In particular, the wavenumber k cannot be expressed with s alone, since
it also depends on α scaling with ωBM : the pressure focusing factor is stronger at the cochlear
base than at the apex [29].

A point that needs to be noted is that ωBM/(2π), the local resonance frequency determined
by mass and stiffness, is not the same as CF, the best frequency at hearing thresholds. This
difference arises because the traveling wave is dissipated before it reaches its characteristic place
due to the high viscosity encountered in the short-wave region [19, 31]. The ratio 2π ·CF/ωBM

was found to be approximately 0.56 based on simulations in which this parameter was iteratively
adjusted. This correction factor influenced the model in two ways: it was used to scale the
Greenwood function expressed in terms of ωBM instead of CF , and it allowed a to be expressed
as a function of ω/ωBM instead of f/CF .

To reproduce the compressive behavior of the traveling wave with increasing levels of stim-
ulation, we varied the parameters G, a, and vTM/vBM across simulations. The parameter
choices were informed by OCT data in the mouse (CF = 10 kHz) for sound levels ranging from
10 dB to 80 dB [3]. We previously explained why and how a was fitted to the data on radial TM
motion (see Fig. 2D and subsection on deformation modes). Similarly, vTM/vBM was linearly
decreased from 3 to 1.7 based on the transverse motion data (Fig. 2B). The negative damping
factor G was simultaneously decreased from 1.3 to 0.5 to match the dynamic range of the BM
response. Note that we did not take into account any phase difference between vTM and vBM

in the version presented in this paper.
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Parameter Value

cochlear height H 170× 10−6m [32]
TM height HTM 25× 10−6m
cochlear length L 6× 10−3m [32]
surface ratio STM/SBM 0.25
BM surface density σBM 6× 10−2 kgm−2

Fluid density ρ 1× 103 kgm−3

Dynamic viscosity µTM 150× 10−3 Pa s [21]
Characteristic pulsation ωBM 1.356× 106 e−826.56x rad s−1 [30, 32]
2π · CF/ωBM 0.56
Nsections 1,000
G (negative damping) 1.3 to 0.5 (linearly decreased)
a (strength of non-standard viscous
damping)

See Fig. 2D

vTM/vBM 3 to 1.7 (linearly decreased)

Table 1: Simulation parameters. For the parameters that
depend on the cochlear location (height and BM surface den-
sity), the values corresponding to the place with ωBM =
2π · 10 kHz are shown.

3. Results

We simulated the traveling wave in response to a 10-kHz probe tone with different strengths
of the active process, roughly representing responses to sound levels from 10 to 80 dB SPL in
mice. The spatial magnitude responses are shown in the upper panel of Fig. 4. The curves
are normalized to the response magnitude at the cochlear base to show the compression of the
peak response with increasing stimulation levels.

The left panel (Fig. 4A) shows the simulated traveling waves when the model does not
include the control mechanism of the TM viscous load. In this figure, only the negative damping
factor G is varied. The colored lines correspond to the responses with the admittance including
the TM viscous load from the passive mode (a = 1). For comparison, the paler lines show the
responses without the TM viscous load (a = 0), but including the viscous fluid stress acting on
the BM [20] (with µw = 1mPa s) to ensure that the model is stable. Comparing the two set
of responses demonstrate the stronger effect of the TM viscous load compared to cortilymph
viscosity acting at the BM interface. To achieve a comparable effect, one would need to increase
the fluid viscosity to approximately 12µw (not shown). Viscous damping due to the presence
of transverse velocity gradients is formally different from constant ratio damping because the
associated viscous forces, relative to the BM velocity, depend on position and frequency. In box
models, the pressure field follows a transverse exponential decay with a characteristic height of
1/kz, so that the transverse velocity gradients scale with the wavenumber sharply increasing
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A.          Negative damping B.        Variable viscous load       C. Full model      

D. E. F. 

G=0.9
G=0.9

without TM 
viscous load

with TM
viscous load

G=1.3

G=1.3

G=0.5

Figure 4: Simulation of BM velocity with the WKB method: responses to a tone (fp = 10 kHz) with various
strengths of the active process. x refers to the place on the cochlear partition from base to apex. Top: Magnitude
of BM velocity normalized to BM velocity at the base of the cochlea. Bottom: Phase of jYBM for the same
responses. Left panel (A., D.): Only the negative damping term was linearly decreased, from G = 1.5 to
G = 0.5. Responses in blue were obtained by including the TM viscous load in the model, without any reduction
from OHC activity. Responses without the TM viscous load but with inclusion of fluid viscosity are shown
with the paler lines (note: the curves for the three lowest G values overlap with the full-color ones). Center
panel (B., E.): The negative damping factor (G) was fixed but the TM viscous load was varied as a function
of frequency and level as indicated in Fig. 2D. The responses are shown for G = 1.3 (maximum value) and for
a lower value (paler lines, G = 0.9). Right panel (C.,F.): Simulations with the full model (negative damping
+ varying viscous load). G and the viscous load were varied in the same way as in the left and center panels
(resp.). In all panels: the vertical gray line corresponds to the cochlear place where ωBM = 2πfp.
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A. 

peak

B. 

Figure 5: Wavenumber k and damping coefficient ζ corresponding to the traveling waves in Fig. 4C. ζ only
reflects the damping contribution from the TM viscous load. It is a dimensionless factor analogous to a damping
ratio, calculated as the real part of aFv/(CvBM ), where C = 4π σBMSBMfp. The plots for k are displayed for
three levels: the minimum intensity (corresponding to G = 1.3), an intermediary level (50 dB, G = 1), and the
maximum intensity (G = 0.5). The magnitude of k is shown as a solid line; the real part is shown as a dashed
curve. Note that the y-scale for ζ changes by two orders of magnitude when it changes by one for k, making it
possible to compare the trends for ζ and k2.

in the peak region [20]. Fluid viscosity results in a viscous stress on the BM proportional to k.
The force due to TM viscoelasticity even scales with k2 under the approximation kzHTM ≪ 1,
because of the difference 1− e−kzH appearing in Eq. 6. Fig. 5 displays the damping coefficient,
proportional to Fv/vBM , alongside k2, making it possible to compare their trends. Viscosity has
a stabilizing role by counteracting the build-up of pressure and BM velocity along the traveling
wave. This effect is illustrated by Fig. 4A: without the TM viscous load, the BM velocity
exhibits a steep and poorly controlled growth as the wave approaches its nominal characterisic
place (marked as a vertical line). For the same variations in the G factor, the responses
including the TM viscous load show smaller variations in the peak magnitude. Additionally,
the wave peak is found basal to the nominal characteristic place, and the basal shift of the
peak response between the most active and passive states is reduced. These observations align
with the remarks on the role of fluid viscosity in Sisto et al. [19, 31].

The center panel (Fig. 4B) corresponds to the reciprocal simulation settings, where the
negative damping factor G is kept constant, but the TM viscous load is modulated according
to the curves in Fig. 2D. In these simulations, vTM/vBM was fixed at its maximum value of 3
and G at its maximum value of 1.3 to show the maximal effect of varying the viscous load. This
effect is characterized by a modulation of the peak response up to 10 dB. Outside the peak
region, the modulation of the viscous load has no visible impact. The localized nature of the
effect is explained by two factors: viscous damping is significantly enhanced in the short-wave
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region; and modulation of the viscous load predominantly occurs in the region slightly basal
to the peak (Fig. 2D). Fig. 4B also displays the responses with a lower value of G (G = 0.9;
paler lines), corresponding to a slightly damped system. Under these conditions, the effect of
the variable viscous load is reduced to 30% to 50% of the maximum effect. If G is fixed to its
minimum value (G = 0.5), the effect on the response becomes even indiscernible (differences
in peak magnitude less than 1 dB; not shown). This demonstrates that negative damping
(G > 1) is necessary for the control of the viscous load to have a substantial effect. If the
wave is sufficiently undamped, a large part of the wave energy reaches the short-wave region,
where variations in viscosity can strongly affect the peak. Otherwise, the peak region is shifted
basally in a region where viscous damping is too low to have an impact on the response.

In the simulations with the full model, shown in the right panel (Fig. 4C), negative damping
and modulation of the viscous load combine to generate a tall peak in response to a low-
intensity sound. This is achieved while maintaining a limited spatial shift of the peak when
the sound level is increased, corresponding to a half-octave (Fig. 7). Figures 5 and 6 display
complementary information to vBM for the WKB simulations carried out with the full model.
Figure 6 highlights the contributions of the different factors to the computation of vBM . It
demonstrates that the predominant factor to the shape and compression of the wave is the
exponential factor appearing in the computation of pd (Eq. 13). The magnitude of the BM
admittance at the peak of the wave is reduced by only 1.6 dB when transitioning from the
most active to most passive state (20 % change). A comparable relative change is observed for
the magnitude of the wavenumber (Fig. 5). The real part of the wavenumber, ranging from
24 to 19 per mm at the peak, determines the wavelength, which varies between 0.26mm to
0.33mm at the peak. Although the variations in the modulus are small, the phase of YBM has
a big impact on the magnitude of e−j

∫
k(x′)dx′

. In the lower panel of Fig. 4, we presented the
phase of jYBM , equal to the phase of k in the short-wave region (or k2 in the long-wave region)
[19]. The overall trend shows that it becomes increasingly negative with higher sound levels
or approaching the characteristic place, reflecting in both cases a shift toward more dissipative
states. When the system is subject to negative damping (reflected as a positive phase in jYBM ),
the control of the viscous load limits or unleashes its effect in a small region basal to the peak
(Fig 4E). This can lead to an abrupt transition of the phase in the peak region, also visible for
the simulations with the full model (Fig 4F).

The results described so far involved one probe tone and a continuum of cochlear locations.
We can also simulate responses to multiple tones at a specific cochlear location, which more
closely matches experimental data. Figure 7 shows the results of such simulations at the
cochlear place with CF = 10 kHz, overlaid on OCT vibration data in mice. The experimental
data are from the Lee et al. dataset, which was independently used in the Methods section to
calibrate key model parameters, including the spatial modulation of the viscous load (parameter
a, Fig. 2). The values for the negative damping factor G represent the same range as in the
previous simulations, but were fine-tuned to provide the best fit to the experimental curves.
An excellent match is observed between the simulated and actual data for frequencies below
CF. For frequencies above CF, the actual data exhibit a steeper roll-off at low and medium
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G=1.
3

G=0.5

Figure 6: Contributions to the spatial profile of vBM (WKB simulations with the full model corresponding
to Fig. 4C). The term e−j

∫
k and the normalization factor appear in the WKB approximation of pd (Eq. 13).

vBM is obtained by multiplying pd by α and YBM . The thick line for e−j
∫
k corresponds to G = 1 (no gain or

loss of power in the absence of viscous loss). Each curve is normalized to its value at the base of the cochlea
(x = 0). All stimulation levels are shown for e−j

∫
k, while the other curves are displayed only for the minimum

and maximum intensities.
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Figure 7: A. Simulation of BM velocity (symbols) in response to tones at a specific cochlear location (CF =
10 kHz). The response magnitude is compared with experimental data, in solid lines (BM displacement gain
re:middle ear averaged over 6 mice, from Lee et al. 2016). The values for G, which sets the negative damping
in the simulations, were adjusted to provide the best fit at each sound level. The viscous load was varied as in
Fig. 2D and Fig. 4C. Sound levels for the experimental data are in dB SPL. The y-axis values for the Lee et al.
data are the same as originally reported, while the simulation results were vertically shifted to compare the two
data sets. B. Corresponding phase responses.

sound levels. In supplementary materials, we provide a figure showing the comparison with the
Lee et al. data using other model versions (Fig. S1). The response below CF is not captured
by a model including only the effect of fluid viscosity, even if the viscosity is increased to 5µw,
though it achieves the correct roll-off for frequencies above CF. However, an equally good fit for
frequencies below CF can be obtained by including the TM passive load, with no mechanism
for varying the TM load, but with higher G values.

4. Discussion

This paper introduced the hypothesis that the cochlear active process could modulate
traveling-wave viscous losses via the cancellation of TM transverse deformations. Several argu-
ments of different nature were provided in support of this hypothesis. The central arguments
were: in the passive state, a transverse velocity gradient in the TM is expected due to the
exponential decay of the fluid pressure above the BM; in the active state, this gradient may be
compensated by a velocity gradient observed experimentally in the region of OHCs. Secondary
arguments included structural or mechanical properties such as the orientation of collagen fibers
in the TM, as well as vibration data potentially corresponding to two deformation modes in
the TM in the region basal to the peak (Fig. 2). A simplified mechanical model of the organ
of Corti was used to derive a BM equivalent admittance which included a viscous damping
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term originating from the TM load. This allowed us to compute WKB approximations of the
traveling wave with different strengths of the active process. With realistic parameter values
(TM dynamic viscosity, TM height, etc.), the simulations showed that the proposed mechanism
could have a significant effect on BM velocity in the peak region (Fig. 4C). The model provided
an excellent match with experimental data on BM velocity, but only for frequencies below CF
(Fig. 7A). A more realistic supra-CF roll-off might be obtained by taking into account the
phase shift of the RL over the BM in the CF region (not integrated in the current model), but
this point is still under investigation.

We saw that to obtain these results, a varying term representing negative damping was still
required in the model admittance. As the negative damping term is increased (through the
factor G), the peak response spans a large dynamic range, but also the effect of undamping
from the TM varying load is stronger (Fig. 4B). These observations led us to hypothesize the
coexistence of two mechanisms contributing to traveling-wave amplification: a first mechanism
of negative damping and a second mechanism of viscous undamping. The origin of the ‘first’
mechanism is not addressed in this paper but it could correspond to proposals developed
elsewhere [14, 15, 33, 34].

What could be the possible advantages of this second mechanism? First, it could limit the
extent of negative damping required to achieve a large dynamic range of responses, thereby
limiting potential instability issues. Second, although the maximum modulation of BM velocity
observed in our simulation appears quite modest (around 10 dB), it is already sufficient to
modify the morphology of the peak (compare Fig. 4A and Fig. 4C), providing additional control
over the response in the short-wave region. Remarkably, the modulation of the viscous load
alone affects the BM velocity magnitude but is not associated with a basal or apical shift of the
wave peak (Fig. 4B). This behavior is reminiscent of the reduction in response gain induced
by the medial olivochlear reflex: when the olivocochlear efferents are activated, the thresholds
of auditory nerve tuning curves are raised, but the center frequencies stay virtually the same
[35]. The proposed mechanism also offers a solution to the problem of ‘propagating’ versus
‘non-propagating’ amplification, which has recently received much attention [5, 7, 14, 36]. This
question arises from the observation that while compressive nonlinearities in the OHC region
exhibit broadband characteristics, traveling-wave amplification builds up only in a restricted
region basal to the peak. This is commonly interpreted as the existence of a physical process
that acts as a filter, allowing only a narrow frequency range of the power locally injected
by the OHCs to effectively couple to the traveling wave. The proposed mechanism naturally
reproduces this behavior: even if TM deformations are suppressed across all frequencies, the
effect on the traveling wave is confined to the short-wave region, where viscous forces are most
prominent (Fig. 4B).

The simulated spatial patterns of BM velocity have features in common with the WKB
simulations in Sisto et al. [19, 20], which did not include TM viscoelasticity but did include
fluid viscosity. In their simulations, the viscosity constant had to be set to 10 times the
viscosity of water in order to obtain a significant effect of fluid viscosity on the traveling wave.
Viscoelasticity within the organ of Corti was already suggested as a plausible argument for
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the use of an increased viscosity constant. We obtain an effect of similar size, but it is not
immediately evident from FV (Eq. 6) why this is the case. Compared to the viscous force at
the BM-fluid interface in Sisto et al., FV includes a difference between the stress on the upper
and lower surface of the TM, which accounts for a factor 1− e−kzHTM ≈ 30% at the wave peak
(the spatial variation of this factor is shown in supplementary figure Fig. S2). Another factor
that reduces the magnitude of the viscous force is the smaller effective TM surface area relative
to the BM surface area (we chose STM/SBM = 0.25). FV also lacks a factor of 2 compared
to the expression in Sisto et al., as the TM is only present on one side of the cochlear duct,
unlike the fluid. These factors collectively reduce the magnitude of the viscous force by around
30. This is offset by two enhancing factors: the dynamic viscosity of the TM —two orders
of magnitude higher than that of water — and the velocity ratio vTM/vBM equal to 3 at the
lowest sound level. This last observation highlights how the large relative motion of the TM,
as seen in experiments, could play an important role in amplifying the proposed mechanism’s
effect.

Another common feature with the simulations in Sisto et al. is that the wave peak in re-
sponse to a tone is found basal to the nominal characteristic place. This occurs because the
traveling wave is heavily damped by viscous losses before reaching the resonance region [31].
In our simulations, the best frequency (CF in text) was lower than the local characteristic
frequency ωBM/(2π) by a factor of 0.56. This behavior differs from many traveling-wave mod-
els (e.g., Shera and Zweig [37]), in which the best frequency at a cochlear location coincides
with the local BM characteristic frequency determined by the stiffness-to-weight ratio of the
cochlear partition. This latter choice initially seems more natural, because the traveling-wave
peak shares several features with the transition seen at a resonance. Models incorporating fluid
viscous damping generally produce spatial responses for vBM that appear too ‘rounded’ to be
realistic (as seen in Sisto et al., or with full-color lines in Fig. 4A), because the peak occurs
in the stiffness-dominated region, away from the actual resonance. Here, however, the specific
form of the admittance and the proposed mechanism preserved most of the expected features of
the traveling wave (Fig. 4C), especially the ‘peakiness’ of BM velocity excitation patterns and
the limited basal shift of the peak with increasing sound levels. However, we were not able to
reproduce the steep roll-off of BM velocity for frequencies above CF (Fig. 7A). The simulated
responses were marked by an abrupt transition in the phase of the admittance at the wave peak
(Fig. 4F), but with smaller phase values compared to a true resonance. This feature is not un-
desirable: because the variation of the admittance phase remains limited, it has little influence
on the vBM phase response. Consequently, the vBM phase response is primarily set by the pres-
sure wave and decreases steadily with stimulus frequency (Fig. 7B). For models in which the
wave peak and characteristic place coincide, the phase varies too rapidly in the peak region, or
the BM admittance must be carefully controlled [27]. Calibrating these engineered-admittance
models is particularly challenging [37], as it requires ensuring the model’s stability, controlling
the phase response, and adjusting the vBM magnitude response — the latter depending on
both changes in pressure-wave gain and changes in the admittance magnitude. In comparison,
the behavior of the model presented here is quite simple, as variations in the response are
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largely accounted for by the spatial integral of the complex wavenumber (Fig. 6). Because the
peak occurs in the stiffness-dominated region (i.e., where the BM reactance is still large), a
change in damping does not affect the magnitude of the BM admittance by a large amount (by
a maximum of 20% in our simulations). A relatively small change in BM admittance appears
consistent with experimental data as investigators reported similar variations in BM velocity
and pressure across sound levels [38].

The model in this paper corresponds to an ‘overturned’ model of active cochlear mechanics
[15], where the RL is in phase or leads the BM by a small phase difference, rather than exhibiting
a quarter-cycle lag as predicted by the push-pull hypothesis. This configuration appears more
in line with recent OCT data — although the relative phase of the RL, and its compatibility
with traveling-wave models, remains a topic of discussion [34]. Mechanically, this implies the
seemingly counterintuitive idea that OHCs contribute to damping BM motion rather than
injecting power into the traveling wave. However, the critique that OHCs need a mechanical
support to have an effective action on the BM, often directed at the push-pull hypothesis, is
also valid for the ‘overtuned’ description of cochlear mechanics. In this paper, we assumed that
the transverse viscous resistance of the TM could provide the mechanical support required for
an effective damping force on the BM. The strength of this resistance would however depend on
the state of the active process. Under this framework, the role of the OHCs would be twofold.
First, they would modulate the TM transverse viscous load by interfering with the velocity
gradient within the TM. Second, they would locally compensate for the viscous damping that
affects their motion, ensuring that the damping force targets BM motion rather than merely
the relative motion between the OHCs and the BM, which would be counterproductive. In
other words, the OHCs could facilitate the transfer of the generated damping force to the BM,
ensuring that the BM admittance and traveling-wave propagation are maximally affected by
the proposed mechanism of undamping.

The question of the mechanical support required for an effective damping force can be taken
a step further. We treated the viscous forces as local, and simply considered the differences of
the forces acting on the upper and lower surface of the TM. However, if the TM/BM complex
is considered as a whole, the viscous forces are internal forces, and the sum of internal forces
must be equal to zero. Any force opposing BM motion must eventually find its origin in
an external element. This raises the question: where would the damping force described in
this paper ultimately come from? The analysis is complex because, in addition to the forces
associated with the transverse velocity gradients, there are shearing forces associated with
radial or longitudinal variations in the transverse velocity — which were assumed to cancel
the sum of viscous forces in the bulk of the TM (resulting in a divergence-free stress field). A
possible answer is that the external damping force could come from the TM limbal attachment
in the form of a change in shear stress.

The mechanical model and the description of forces involved were highly simplified, relying
on many assumptions to facilitate an analytical approach. One crucial assumption was that
the transverse velocity in the TM exhibits an exponential-decay profile in the passive scenario,
similar to the fluid flow above the BM in box models of the cochlea. This follows from the
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Helmholtz-like equation (Eq. 3), derived in analogy to the Laplace’s equation satisfied by the
cochlear fluid. The underlying premise of this equation is that a wave propagates in the TM
with longitudinal motion similar to that of the fluid pressure wave. Rather than being driven
directly by the fluid, this wave could be driven by longitudinal oscillations in the organ of
Corti. Recent studies have highlighted the importance of in-vivo longitudinal motion in the
region of OHCs [4, 39], attached to the TM via the OHC hair bundles. However, to the authors’
knowledge, no direct data confirms whether this longitudinal motion extends to the TM.

This work represents a first modeling approach that provides a useful framework for ex-
ploring the consequences of an undamping mechanism based on the viscoelasticity of the TM.
Several improvements could refine the conclusions of this simplified approach, including more
realistic representations of TM geometry and viscoelastic properties, non-ideal flow dynamics,
integration of RL or TM motion phase relative to the BM, or a more accurate account of
organ-of-Corti mechanics. The existence of the proposed mechanism could be further assessed
by testing the model’s predictions against a broader set of mechanical data, including measure-
ments in mouse mutants with altered TM properties. Strong support for this hypothesis would
eventually come from more direct experimental evidence, such as in vivo or ex vivo observations
of TM deformation modes — although such experiments may be challenging due to the TM’s
low reflectivity and the small deformations involved.
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293 (1-2) (2012) 12–20. doi:10.1016/j.heares.2012.05.005.

22

http://arxiv.org/abs/9566320
https://doi.org/10.1121/1.418265
https://doi.org/10.1073/pnas.1607428113
https://doi.org/10.1523/JNEUROSCI.1157-16.2016
https://doi.org/10.1523/JNEUROSCI.1157-16.2016
https://doi.org/10.1038/s41467-018-05483-z
https://doi.org/10.1038/s41467-018-05483-z
https://doi.org/10.1523/JNEUROSCI.2608-18.2019
https://doi.org/10.1523/JNEUROSCI.2608-18.2019
https://doi.org/10.1038/s41598-022-24394-0
https://doi.org/10.1073/pnas.2025206118
https://doi.org/10.1016/j.heares.2021.108367
http://arxiv.org/abs/18760690
https://doi.org/10.1016/j.neuron.2008.07.012
http://arxiv.org/abs/1408.2085
https://doi.org/10.1088/0034-4885/77/7/076601
https://doi.org/10.1088/0034-4885/77/7/076601
https://doi.org/10.1016/j.bpj.2020.10.005
https://doi.org/10.1016/j.bpj.2020.10.005
https://doi.org/10.1016/j.heares.2012.05.005


Active control of transverse viscoelastic damping in the tectorial membrane post-print

[13] W. Zhou, T. Jabeen, S. Sabha, J. Becker, J.-H. Nam, Deiters Cells Act as Mechanical Equalizers for Outer
Hair Cells, Journal of Neuroscience 42 (44) (2022) 8361–8372. doi:10.1523/JNEUROSCI.2417-21.2022.

[14] J. J. Guinan, Cochlear amplification in the short-wave region by outer hair cells changing organ-of-Corti
area to amplify the fluid traveling wave, Hearing Research 426 (2022) 108641. doi:10.1016/j.heares.

2022.108641.
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