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Context

Y : time-frequency decomposition of the signal X

W = (W1, ...,Wm): �lter bank
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The e�cient coding hypothesis

The e�cient coding hypothesis:
sensory sytems encode natural stimuli e�ciently.

E�ciency ? Several criteria:

Redundancy reduction [Barlow, 1961]

Information-maximization [Linsker, 1988]

Minimum entropy code [Barlow, 1989]

Independent feature coding
→ Independent Component Analysis (ICA)

[Jutten and Herault, 1988]
Sparse coding [Olshausen and Field, 2004]
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The e�cient coding hypothesis

Evidence

Empirical: Measures of information transfer in single nerve �bers.
Example: higher rates for naturalistic sounds compared to white
noise, in auditory nerves [Rieke et al., 1995], in midbrain and
auditory cortex [Hsu et al., 2004]
Predictive power: Prediction of characteristics of sensory systems
based on statistics of natural stimuli.
Example: Prediction of visual Receptive Pro�les (V1) based on
statistics of natural images [Olshausen and Field, 1996].

Limitations

Higher level processing, information bottleneck.
The neural code is redundant.

NB: not that many auditory hair cells (∼ 1-10k IHCs)
Still the 'redundancy reduction' criterion has many bene�ts
[Barlow, 2001] (e.g. general strategy to �nd good features of data)
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Minimum entropy codes

min
W

h(W ) = min
W

∑
i

H(Yi ) − H(Y )

H(Yi ) = −E(log p(yi )) : marginal entropy terms

H(Y ): joint entropy

entropy ↔ quantity of information ↔ coding/neuronal resources

−H(Y ) behaves as a penalty term. It prevents the collapse of �lters Wi

during learning (controls size and correlation).
→ W square matrix: −H(Y ) = −H(X )− log | detW |
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Overcompleteness

Case where W is a rectangular matrix n ×m with m > n.
What happens to the penalty term ?

No natural expression

Every overcomplete dictionaries have highly correlated components.

Minimum entropy of outputs gain importance from decorrelation of
�lters.

Still, we want the dictionaries to represent all directions of the space
(diversity of �lters)

Overcomplete dictionaries of �lters uniformly distributed in
time/frequency/phase.

→ just forget the penalty term.

h =
∑
i

H(Yi )
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Independent Component Analysis (ICA)

Mutual information

I (Y1, · · · ,Ym) =
∑
i

H(Yi ) − H(Y )

Bivariate case : I (Y1,Y2) = H(Y1) + H(Y2)− H(Y1,Y2)

Type of redundancy

Intuition: we want the output channels to code for independent
features (factorial code).

ICA → minimization of I (Y1, · · · ,Ym).
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Statistical structure

minimum entropy code = structure

Typical spectogram of speech

In this special case:

structure = sparse activations (peaked distributions around 0)
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Probalistic model

How can we estimate the entropy terms (probalistic prior) ?

Posterior distribution of amplitude for typical speech samples (from
[Gazor and Zhang, 2003])

Laplace prior : log[p(y)] = log γ/2− γ|y |
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Sparse coding

With this prior, the objective to minimize is:

h =
∑
i

γiE(|Yi |) = γE(||Y ||1)

(in reality the γi are di�erent and depends on the power spectrum.)

Another way to derive the L1 norm:
Sparse coding : reduce activation or number of neuron spikes (save energy).
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Quadratric time-frequency distributions

f input signal, g analysis function (real non-negative functions)

Cross Wigner-Ville distributions:

Wf ,g (t, ω) =
1

2π

∫
τ

f (t + τ/2)g(t − τ/2)e−iωτdτ
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Extra-sparse code: is it possible ?

∼ grandmother cell for (t0, f0)
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Heisenberg's uncertainty principle

Extra-sparse (or factorial) code impossible.
Best time-frequency resolution achieved by Gabor �lters.

σtσf =
1

4π
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Lieb's uncertainty principle

h(f , g) = ||Wf ,g ||1

min
f ,g

h(f , g)

s.t ||f ||2 = ||g ||2 = 1 ?

Lieb's uncertainty principle [Lieb, 1990]

||Wf ,g ||1 ≥ ||f ||2||g ||2
Case of equality: f is Gaussian and f = g
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Lieb's uncertainty principle

Note:

||Wf ,g ||1 ≥ ||f ||2||g ||2 ≥< f , g >=

∫
t

∫
ω

Wf ,g (t, ω)dtdω

Case of equality: f = g and Wf ,f is non-negative.
→ Hudson's theorem : Wf ,f is non-negative i� f is a Gaussian.
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Picture: 3D image (confocal miscroscopy) of a mouse cochlea.

Sensory hair cells:
3.5k inner hair cells (IHC) + 12k outer hair cells (OHC)

Nerve �bers: a�erent connections mostly on IHCs

Tonotopy : place ↔ frequency



Cochlea = frequency analyzer

Time histogram of neuron spikes of auditory nerve �bers (cat) in response to
an utterance (Delgutte, 1999).
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ICA applied to speech

ICA applied to speech produces a bank of �lters similar to both Gabor
wavelets and auditory �lters [Lewicki, 2002] :

Input X : 128 samples/8ms slices of speech
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ICA applied to speech

Frequency selectivity is expressed by the quality factor:

Q10 =
fc

∆f10dB

The quality factor Q10 is characterized by the same power law for learned �lters
and auditory �lters.
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Further analysis

Stilp and Lewicki carried out ICA on di�erent phonetic categories (TIMIT
Database: American English).[Stilp and Lewicki, 2013]

β parameter : slope Q10 on fc (log-log scale)
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Further analysis

The β parameter depends on the phonetic class (from
[Stilp and Lewicki, 2013]).
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What is the meaning of the β parameter ?

1 Controls the time-frequency trade-o� in the high frequency range

Q10(f ) = Q0

(
f

f0

)β
, f0 = 1.0kHz , Q0 = 2.0

2 Separates unique resolution from multi-resolution decompositions
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Questions

Why do we obtain di�erent values for β ?

What is the meaningful division of speech for stat. structure ?

What are the signal/acoustic features relevant to β ?

Are there some regularities at a �ner level that can be exploited by
e�cient coding schemes ?
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Parametric approach

To go further in the description of the statistical structure of speech, I
propose a parametric approach instead of ICA.
Method:

1 Create a set of 30 overcomplete dictionaries Wβ of Gabor wavelets
from β = 0.3 to β = 1.2

2 Compute the scores h(β) = E
(
||W (β)TX ||1

)
3 Select β? = argminβ h(β).

Done for 400 or 800 (normalized) 16ms-slices of speech
Con�dence intervals are computed with a bootstrap procedure.
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Results

Deloche, 2018

Séminaire Neuromathématiques, Collège de France 2019, April 34/48



Plan

2 Are speech statistics adapted to peripheral auditory coding ?
Previous result: ICA applied to speech is congruent with linear
models of auditory �lters
Going further: adaptive representations of speech sounds
Understanding the �ne-grained statistical structure of speech
Agreement with non-linear cochlear signal processing ?

Séminaire Neuromathématiques, Collège de France 2019, April 35/48



Non-structured sounds and structured sounds
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Non-structured sounds
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Non-structured sounds
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Non-structured sounds

Stop bursts
(b, p, d, t... )

Time structure
(low β)

Sibilant fricatives
(s, z, S...)

Freq. structure
(high β)



Non-structured sounds
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Plosives and a�ricates are biphasic
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Vowels

Power spectrum of generated sound at the output of a cylindrical waveguide
(for 2 di�erent radii). Greater aperture (=greater loss) results in larger
bandwidths.

Two concurrent e�ects of greater aperture:

1 Larger bandwidths
2 Higher sound intensity level
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Structured sounds: Vowels
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Sensory hair cells:3.5k inner hair cells (IHC) + 12k outer hair cells (OHC)
Role of outer hair cells ?

amplify signal + increase frequency selectivity



Level dependence

OHC have a non-linear behavior.

E�ect of cochlear compression: cochlear �lter bandwidths increase with sound
intensity level [Ruggero et al., 1997].
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Comparison

Left: Theoretical behavior of β with respect to intensity level in dB (ref:max)
by intervals of 5dB.
Right: Physiological measures (cat cochlea) [Verschooten et al., 2012]
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Further directions/Conclusions

Conclusions

Gabor �lters achieve the most sparse patterns for Wigner-Ville
distributions.

ICA applied to speech produces �lters similar to cochlear �lters.

Several acoustic features explain the �ne-grained statistical structure
of speech (but they are di�erent for consonants and vowels).

Level-dependent auditory �lters may be part of an advanced e�cient
coding scheme.

Further directions

Loosen the model (e.g. non-parametric estimation of
Q = f (fc , IdB)).

Adapt the model so as to re�ect time processing of inner ear.

Asymmetry ↔ enforce sparsity patterns.

Still open question: is the frequency selectivity of humans' cochlea
di�erent from other mammals ? (and more adapted to speech ?)
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Appendix: Redundancy reduction

Redundancy (Shannon/Barlow):

1− H(Y )

C

where H(Y ) = −E(log p(y)) is output entropy,
and C is the channel coding capacity.
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Appendix: Redundancy reduction

Decomposition of redundancy

R = 1− H(Y )

C
=

1

C
(
∑
i

H(Yi )− H(Y ))− 1

C
(C −

∑
i

H(Yi ))

Two associated principles [Atick, 1992]:

(
∑

i H(Yi )− H(Y )) : minimize mutual information between
components → Redundancy reduction, minimum-entropy codes

(C −
∑

i H(Yi )): maximize information → Infomax
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Appendix: Redundancy reduction

Decomposition of redundancy

R = 1− H(Y )

C
=

1

C
(
∑
i

H(Yi )− H(Y ))− 1

C
(C −

∑
i

H(Yi ))

I (Y1, · · · ,Ym) = (
∑

i H(Yi )− H(Y )) : minimize mutual
information between components → Redundancy reduction,
minimum-entropy codes
Goal: �nd a set of independent features

(C −
∑

i H(Yi )): maximize information → Infomax
also requires a set of independent features!
[Nadal and Parga, 1994, Bell and Sejnowski, 1995]
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Appendix: overcompleteness

In general, W is a rectangular matrix n ×m with m > n.
What happens to the − log | detW | penalty ?

Every overcomplete dictionaries have correlated components.

Minimum entropy/Sparseness gain importance from independence.

Still, we want the dictionnaries to represent all directions of the
space (e.g. �lters uniformly distributed in time-freq-phase space)
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Appendix: Overcompleteness

Solution 1: enforce sparsity with reconstruction from a few �lters

min
W ,Y
||X −W−TY ||2 + γ

∑
||Y ||1

matching pursuit, sparse autoencoders...

Solution 2: Use an appropriate family of dictionnaries and forget
the penalty term

h = ||Y ||1
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Appendix: Sparse coding and V1

A sparse coding algorithm on natural images produces �lters that
resemble receptive pro�les of V1 [Olshausen and Field, 1996].
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Appendix: Gabor dictionaries

a. Waveforms of several Gabor dictionnary atoms
b. Associated frequency responses
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Appendix: Asymmetry

However: auditory �lters are asymmetric. Asymmetric �lters are also
found with an algorithm of matching pursuit [Smith and Lewicki, 2006].
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