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Efficient time-frequency coding
m The efficient coding hypothesis, minimum entropy codes
m Independent Component Analysis (ICA), Sparse Coding
m Time-frequency representations & uncertainty principle

Are speech statistics adapted to peripheral auditory coding ?
m Previous result: ICA applied to speech is congruent with linear
models of auditory filters
m Going further: adaptive representations of speech sounds
m Understanding the fine-grained statistical structure of speech
m Agreement with non-linear cochlear signal processing ?
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Plan

Efficient time-frequency coding
m The efficient coding hypothesis, minimum entropy codes
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Context

Input Output
T h
Y=W'X Y,
X Linear transformation Y
stochastic source :

Stimuli Filtering Neural channels
(speech slices) (cochlear hair cells) (cochlear nerve)

m Y time-frequency decomposition of the signal X
m W= (W,.., W,): filter bank
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The efficient coding hypothesis

The efficient coding hypothesis:
sensory sytems encode natural stimuli efficiently.

Efficiency 7 Several criteria:

m Redundancy reduction [Barlow, 1961]
m Information-maximization [Linsker, 1988]

= Minimum entropy code [Barlow, 1989]

= Independent feature coding
— Independent Component Analysis (ICA)
[Jutten and Herault, 1988]
= Sparse coding [Olshausen and Field, 2004]
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The efficient coding hypothesis

m Evidence

m Empirical: Measures of information transfer in single nerve fibers.
Example: higher rates for naturalistic sounds compared to white
noise, in auditory nerves [Rieke et al., 1995], in midbrain and
auditory cortex [Hsu et al., 2004]

m Predictive power: Prediction of characteristics of sensory systems
based on statistics of natural stimuli.
Example: Prediction of visual Receptive Profiles (V1) based on
statistics of natural images [Olshausen and Field, 1996].

m Limitations
m Higher level processing, information bottleneck.
m The neural code is redundant.

® NB: not that many auditory hair cells (~ 1-10k IHCs)
m Still the 'redundancy reduction’ criterion has many benefits
[Barlow, 2001] (e.g. general strategy to find good features of data)
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Minimum entropy codes

Input Output
T N
Y=W'X Y
X . Linear transformation \E
stochastic source :

Stimuli Filtering Neural channels
(speech slices) (cochlear hair cells) (cochlear nerve)

min h(WW) = min > H(Y;) = H(Y)

i

m H(Y;) = —E(log p(y;)) : marginal entropy terms

m H(Y): joint entropy

m entropy <> quantity of information <+ coding/neuronal resources
—H(Y') behaves as a penalty term. It prevents the collapse of filters W;
during learning (controls size and correlation).
— W square matrix: —H(Y) = —H(X) — log|det W/|
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Overcompleteness

Case where W is a rectangular matrix n x m with m > n.
What happens to the penalty term 7

m No natural expression
m Every overcomplete dictionaries have highly correlated components.

m Minimum entropy of outputs gain importance from decorrelation of
filters.

m Still, we want the dictionaries to represent all directions of the space
(diversity of filters)

Overcomplete dictionaries of filters uniformly distributed in
time/frequency/phase.
— just forget the penalty term.

h=> H(Y)
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Efficient time-frequency coding

m Independent Component Analysis (ICA), Sparse Coding
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Independent Component Analysis (ICA)

Mutual information

(Y, ZH — H(Y)

) O(Y)Q
H(Y1) H(Y2) H(Y1) H(Y2)

(Y1, Y2) I(Yy, Y2) =0
Bivariate case : I(Y1, Y2) = H(Y1) + H(Y2) — H( Y1, Y2)

m Type of redundancy
m Intuition: we want the output channels to code for independent
features (factorial code).
ICA — minimization of /(Y1,---, Ym).
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Statistical structure

minimum entropy code = structure

FREQUENCY @z
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Typical spectogram of speech

In this special case:

structure = sparse activations (peaked distributions around 0)
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Probalistic model

How can we estimate the entropy terms (probalistic prior) ?

10— = e e o e S
él(lz‘ o
= — Experimental
UIOH! ‘W - Laplacian \W i
=1 -0.5 0 0.5 1
Amplitude

Posterior distribution of amplitude for typical speech samples (from
[Gazor and Zhang, 2003])

Laplace prior : log[p(y)] = log~/2 — ~|y|
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Sparse coding

With this prior, the objective to minimize is:

h= ZwE(IY;D =E(Y(l)

(in reality the ~; are different and depends on the power spectrum.)

Another way to derive the Ly norm:
Sparse coding : reduce activation or number of neuron spikes (save energy).

Viix[h

N

17y
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Efficient time-frequency coding

m Time-frequency representations & uncertainty principle
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Quadratric time-frequency distributions

m f input signal, g analysis function (real non-negative functions)
m Cross Wigner-Ville distributions:

Wr g(t,w) = 21? / F(t +7/2)g(t —7/2)e “ dr
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Extra-sparse code: is it possible ?

f

~ grandmother cell for (to, f)
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Heisenberg's uncertainty principle

’:.

Extra-sparse (or factorial) code impossible.
Best time-frequency resolution achieved by Gabor filters.
1
Ot0f = —
t0f = o
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Lieb’s uncertainty principle

stl[flla=1lgll=17

[ Weglly = [I1]2]]8]l2
Case of equality: f is Gaussian and f = g
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Lieb’s uncertainty principle

Note:

Wesll = Fllllglls =< g >= [ | Wey(t.w)dede

t

Case of equality: f = g and Wy ¢ is non-negative.
— Hudson's theorem : W ¢ is non-negative iff f is a Gaussian.
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Plan

Are speech statistics adapted to peripheral auditory coding ?
m Previous result: ICA applied to speech is congruent with linear
models of auditory filters
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gt : ;
Credits: Glen MacDonald & Ed Rubel
Picture: 3D image (confocal miscroscopy) of a mouse cochlea.

m Sensory hair cells:
3.5k inner hair cells (IHC) + 12k outer hair cells (OHC)

m . afferent connections mostly on IHCs

m Tonotopy : place < frequency



Cochlea = frequency analyzer

CHARACTERISTIC FREQUENCY (Hz)
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Time histogram of neuron spikes of auditory nerve fibers (cat) in response to
an utterance (Delgutte, 1999).
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ICA applied to speech

ICA applied to speech produces a bank of filters similar to both Gabor
wavelets and auditory filters [Lewicki, 2002] :

Wit
NG
U

Input X : 128 samples/8ms slices of speech
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ICA applied to speech

Frequency selectivity is expressed by the quality factor:

fe
Qio = fi
Atiods
20 o Efficient coding filters
for speech
10 — Physiological data
= = (cat cochlea)
o 5
8
o
2

02 05 1 2 5 10 20
Center frequency (kHz)

The quality factor Q10 is characterized by the same power law for learned filters
and auditory filters.
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Are speech statistics adapted to peripheral auditory coding ?

m Going further: adaptive representations of speech sounds
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Further analysis

Stilp and Lewicki carried out ICA on different phonetic categories (TIMIT
Database: American English).[Stilp and Lewicki, 2013]

A) Stops B) Affricates C) Fricatives
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3 parameter : slope Q19 on f. (log-log scale) ‘
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Further analysis

S N High iy, uw, ux, ih, ix, uh, er, axr,
Low == Vowels: Height oh

High Low ah, ax, ax-h, ao, ae, aa
. Front iy, ih, ix, eh, ae
Diphthongs =@ Mid er, axr, ah, ax, ax-h, aa
Environmental Speech Vocalizations Back ww. ux. uh. a0

Diphthong | ey, ay. oy, aw, ow

Stops @ Closure bel, del, gel, pel, tel, kel, g

Laterals/Glides ==
Affricates @@ o Stops b, d,dx,g. p. .k
Fricatives @ Fricatives s, z, f, v, sh, zh, th, dh
Nasals Affricates ch, jh
Environmental Speech Vocalizations
Laterals/glides | r, 1, el, w, y, hh, hv
04 03 Y 07 05 9 10 11 Nasals m, em, n, en, nx, ng, eng
Q, Regression Slope

The 3 parameter depends on the phonetic class (from
[Stilp and Lewicki, 2013]).
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What is the meaning of the S parameter ?

Controls the time-frequency trade-off in the high frequency range

1)
f f
Qlo(f) = QO <f 5 fo = 10/(HZ, QO =20
0
Separates unique resolution from multi-resolution decompositions
w0
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oF
N Constant Q Transform = 3=0
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Center frequency f, (kHz)
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Questions

m Why do we obtain different values for 8 ?
m What is the meaningful division of speech for stat. structure ?
m What are the signal/acoustic features relevant to § 7

m Are there some regularities at a finer level that can be exploited by
efficient coding schemes ?
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Parametric approach

To go further in the description of the statistical structure of speech, |
propose a parametric approach instead of ICA.
Method:

Create a set of 30 overcomplete dictionaries W3 of Gabor wavelets
from 8 =03to f=1.2

Compute the scores h(3) = E (||W(8)7 X||1)
Select 8* = arg ming h(/3).

Done for 400 or 800 (normalized) 16ms-slices of speech
Confidence intervals are computed with a bootstrap procedure.
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Results
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Plan

Are speech statistics adapted to peripheral auditory coding ?

m Understanding the fine-grained statistical structure of speech
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Non-structured sounds and structured sounds
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Non-structured sounds

Mean response (amplitude)
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Non-structured sounds

Mean response (amplitude)
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Stop bursts
(b, p, d, t... )

Time structure

(low 5)

Sibilant fricatives

(s, z [...)

Freq. structure
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15




Non-structured sounds

Less structured

0.9

Sibilant fricatives

d3

t
Short stops
Broadband fricatives

A

Affricates / longer stops :
high internal variability

j n

—el—

] B
2,06 € v
S -1 r fo
& —au 5
<4
(=} a
=
0.3 0.4 0.5 0.6 07 08 0.9 10 11 12
-~ I —
Time Time-frequency trade-off Frequency
Sé Ne hé

Collége de France 2019, April

40/4a8



Plosives and affricates are biphasic

1.2
1.0 4
0.8 J—

@ d3
— 3
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Timesteps Timesteps
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Vowels

— r=0.5cm
— r=lcm

Power (dB)

—100 L
10°

f

Power spectrum of generated sound at the output of a cylindrical waveguide
(for 2 different radii). Greater aperture (=greater loss) results in larger
bandwidths.

Two concurrent effects of greater aperture:

Larger bandwidths
Higher sound intensity level

Nei hé i Collége de France 2019, April 42/48



Structured sounds: Vowels
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Plan

Are speech statistics adapted to peripheral auditory coding ?

m Agreement with non-linear cochlear signal processing ?
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N ]
Credits: Glen MacDonald & Ed Rubel

Sensory hair cells:3.5k inner hair cells (IHC) + 12k outer hair cells (OHC)
Role of outer hair cells ?

amplify signal + increase frequency selectivity



Level dependence

OHC have a non-linear behavior.

10°
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Effect of cochlear compression: cochlear filter bandwidths increase with sound
intensity level [Ruggero et al., 1997].
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Comparison

“m— 10kHz (D1004)
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Left: Theoretical behavior of 3 with respect to intensity level in dB (ref:max)

by intervals of 5dB.
Right: Physiological measures (cat cochlea) [Verschooten et al., 2012]
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Further directions/Conclusions

Conclusions

m Gabor filters achieve the most sparse patterns for Wigner-Ville
distributions.

m ICA applied to speech produces filters similar to cochlear filters.

m Several acoustic features explain the fine-grained statistical structure
of speech (but they are different for consonants and vowels).

m Level-dependent auditory filters may be part of an advanced efficient
coding scheme.

Further directions
m Loosen the model (e.g. non-parametric estimation of
Q = f(fc, lug)).
m Adapt the model so as to reflect time processing of inner ear.
m Asymmetry <> enforce sparsity patterns.

m Still open question: is the frequency selectivity of humans’ cochlea
different from other mammals ? (and more adapted to speech ?)

Séminaire N hé i Collége de France 2019, April 48/48




Ne

Collége de France 2019, April

1/14



Appendix: Redundancy reduction

Redundancy (Shannon/Barlow):

where H(Y) = —E(log p(y)) is output entropy,
and C is the channel coding capacity.
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Appendix: Redundancy reduction

Decomposition of redundancy
H(Y 1 1,
R=1- 0 - LS — HY) — (€ S HO)

Two associated principles [Atick, 1992]:

m (3, H(Y;) — H(Y)) : minimize mutual information between
components — Redundancy reduction, minimum-entropy codes

m (C— >, H(Y;)): maximize information — Infomax
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Appendix: Redundancy reduction

Decomposition of redundancy

Rt 5 = G HOM ) — (€ S0

(Y, Ym) = (32, H(Y:) — H(Y)) : minimize mutual
information between components — Redundancy reduction,
minimum-entropy codes
Goal: find a set of independent features

m (C— >, H(Y;)): maximize information — Infomax
also requires a set of independent features!

[Nadal and Parga, 1994, Bell and Sejnowski, 1995]
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Appendix: overcompleteness

In general, W is a rectangular matrix n x m with m > n.
What happens to the — log | det W| penalty ?
m Every overcomplete dictionaries have correlated components.
m Minimum entropy/Sparseness gain importance from independence.

m Still, we want the dictionnaries to represent all directions of the
space (e.g. filters uniformly distributed in time-freq-phase space)
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Appendix: Overcompleteness

m Solution 1: enforce sparsity with reconstruction from a few filters
min [[X = W=TY L+ > 1Yk

matching pursuit, sparse autoencoders...
m Solution 2: Use an appropriate family of dictionnaries and forget

lll'f PE Il\ll'. /term

h=11Ylh
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Appendix: Sparse coding and V1

A sparse coding algorithm on natural images produces filters that
resemble receptive profiles of V1 [Olshausen and Field, 1996].

*ANEEENERNSPNDEAE
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.
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Appendix: Gabor dictionaries

|
e Vﬂvnrmuﬁv m
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a. Waveforms of several Gabor dictionnary atoms
b. Associated frequency responses
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Appendix: Asymmetry

However: auditory filters are asymmetric. Asymmetric filters are also
found with an algorithm of matching pursuit [Smith and Lewicki, 2006].

S s a8 o
e o
e
A i~
4o

Figure 3 | Human speech is adapted to the mammalian cochlear code. a, As
with the kernel functions trained on the natural sounds ensemble, the
efficient code for speech consists of asymmetric sinusoids that closely match
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